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When, Where, What, How

e Exam 3 will be 12/16, 13:30-16:30, here.

@ If you need a conflict exam or an on-line exam, tell me in
advance.

@ 2/3 of the exam (about 6 questions) will cover voice
conversion, CTC, Transformers, and self-supervised learning.

@ 1/3 of the exam (about 3 questions) will be review of topics
from exam 1 and exam 2.

@ You can bring two pages of handwritten notes, front and back.

@ No calculators.
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Topics to be covered

o Material from exam 1: loudness, voder, pitch, speech
production

@ Material from exam 2: DTW, LPC, HMM
o New material:

e Voice conversion: formant synthesis, neural nets

o CTC: RNNs, CTC labeling, CTC forward-backward, loss
gradient

e Transformer: Dot-product similarity, Attention, Masking,
Positional encoding

o Self-supervised learning: CPC, HUBERT, VQ-VAE, Transposed
Convolution
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Formant-Based Speech Synthesis
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An example voice source is the
LF model, which is determined
by To (the pitch period) plus
four other parameters:

o E., amplitude of excitation

@ te, time of the excitation

@ time from upward-going
zero-crossing, tc, to
downward-going

zero-crossing, tp g
@ slope of the return part, % %oy P 3 | smmee 3
a ! 2. 1 ke L 1 1 b
SPEAKER: GF NT IDENTITY: AX CT 80 NFR )
DATA WDSO FFS - (KHZ) 8 1985-01-16 19:06:20

F16:  VOICE-SOURCE MATCHING BY LF-MODEL

(c) http://www.speech.kth.se/gpsr


http://www.speech.kth.se/qpsr
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Formants can be converted from ]
one voice to another using a ‘‘‘‘‘
neural network. Narendranath et AL LA
al. (1995), Figure 4: (a) original ™[~ T
voice, (c) conversion target, (b)
conversion result. )
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(c) http://wuw.speech.kth.se/gpsr


http://www.speech.kth.se/qpsr
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Two-Layer Feedforward Neural Network

é é é 2z = g(by) 7 = g(b)
I be = vko + D p_1 VekYk b=Vy
Yie = f(ax) y = f(a)

ak = Uko + Zle UkjX; 3= Ux

X is the input vector



Voice Conversion
Gradient Descent = Local Optimization

Given an initial U, V, find U, V with lower error.
. oL
Ugj = Uy — ni(?uk-
J
. oL
Vek = Vik — 778ng

n =Learning Rate

o If i too large, gradient descent won't converge. If too small,
convergence is slow. Usually we pick n =~ 0.001 and cross our
fingers.

@ Second-order methods like L-BFGS and Adam choose an
optimal 7 at each step, so they're MUCH faster.
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Back-Propagation = Use Chain Rule to Find the

Derivatives
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Recurrent Neural Net (RNN)

A recurrent neural net defines nonlinear recurrence of a hidden
vector, hy:

ht = O'(UXj_— + Vhtf]_)
yt = softmax (Wh;)

The weight matrices, U, V, and W, are chosen to minimize the
loss function. For example, suppose we're using a cross-entropy
loss with target sequence z, then

-
L= —Zlnyztt
t=1
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Back-propagation through time does this:

L dLoy | dL D
dht N d_yt aht dht+1 8ht
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Many-to-One Mapping

The key idea of CTC is that, since U < T, the mapping from y to
z is many-to-one. CTC makes repeated letters possible by using a
blank character, —. The many-to-one mapping now has two steps:
(1) eliminate all duplicate characters, (2) THEN eliminate all

blanks.
y=[f,—eed] o B o z = [f,e,d]
y:[f7e7_7e7d]c B °Z:[f,e,e,d]

y:[fa_afvevd]c B °z:[f,f,e,d]
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Temporal Classification

The temporal classification problem is now just:

h(x) = argmax p(l|x)
leL=T

= argmax Z p(m|x)

<T
leLs 6871( )

= argmax Z Hym

leL=T

o I =[h,...,Iv] is a label sequence of any length V < T where
l, €L

o m=[m,..., 7] is a path of length T where 7, € LU {-}.
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CTC Forward Algorithm: The Modified Label Sequence

In order to express the CTC forward algorithm, we need to define a
modified label sequence, I. I' is equal to | with blanks inserted
between every pair of letters. Thus if

I =[f,e,d],

then
ll = [_) f) =€ d)_]°

If the length of lis |I|, then the length of I is 2|I| + 1.
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The CTC Forward Algorithm

T-2 T-1

Graves et al., 2006, Fig. 3. (c) ICML
Repeating the same character («;—1(V'1:5)) or adding one more
character (a;—1(l'1:s—1)) are always possible. Adding two more
characters (a;—1(V1:s—2)) is OK if the current character is not a
blank or a repeat.
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Differentiating the CTC Loss

dc ([ -1 1 L
dyf‘<p(z\x)> v o2 1w

reB1(z),mr=k t=1

where

’Y‘r(k) = p(7TT = k,Z|X) = iq— Z O‘T(zll:s)ﬂT(z/s:(2U+l)) (1)

Yk s:zl=k

o Bt(Z's2u+1) = P(Z's.2us1) X6 T)

e Notice that o (Z'1.5) and §,(Z s:(2U+1) both include the fact
that the network is producing z, = k at time 7. To
compensate for that duplication, Eq. (1) has a % factor.
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The Cauchy-Schwartz Inequality

The Cauchy-Schwart inequality says that, for any two vectors
X = [X17 . ,XN]T and )7: [yl,. .. ,yN]T,

>T o121 =
%7yl < 15111711

If we define the unit vectors as follows,

. X .y
X=" =5 Y=175
[1%]] 1]

then the Cauchy-Schwartz inequality says that

—1<%Ty<1
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Attention

n
Context Vector: c¢(q') = Z ;v
j=1

exp (Similarity(qi, kj))
> i1 exp (Similarity(q’, k7))

Attention: «;j =

o The query, g (sometimes g'), is the vector whose context we
want

o The key, k (sometimes k/), tells us whether or not v/ is useful
context

@ The value, v (sometimes /), provides the actual context
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Scaled Dot-Product Attention

We assume that g and k have been transformed by some preceding
neural net, so gk is large if and only if they should be considered
similar. Therefore the similarity score is
1 . .
eij=——q kT,

Vi

and the corresponding attention weight is

exp(e,-J)
> exp(ei)

o j = softmax(e;j) =

Q11 Q1p

)

= softmax <QKT>
a Vi

Qp1 -+ Opp

)
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Masking

If g, k and v are decoder vectors being produced autoregressively
(e.g., decoder self-attention), then c¢(q') can only depend on
values of W for j < i

i—1
c(q) =) aijv
j=1

This can be done by setting a;; = 0 for j > i. In turn, this can be
done by masking the similarity scores as follows:

1 . .
€= g d K m

where

[0 j<i
"ﬁ'—{—oo j=i
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Multi-Head Attention

head; = Attention (QW,Q, KWK, vvv,.V)

WRW/TKT
= softmax (Q L A

Vi

where the weight matrices WI.Q, WX and W,-V, for1 << h, are

1
learned matrices summarizing the type of context accumulated in

each head. Then
MultiHead(Q, K, V) = Concat(heads, ..., head,) W©,

where WO is a final transformation that can, e.g., combine
information from different heads in a learned manner.
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Unsupervised Learning Algorithms

@ Manifold learning, e.g., Autoencoder:

Lyvae = E [|x = X|]
Luse = E [||x — x|1?]

o Clustering

o Classify each token to its nearest mean

o Recompute each mean as the average of its tokens
@ Self-supervised learning

o The hyperplane is H] Z, = threshold.
e H, is the average of all of the Z vectors on the right side of
the hyperplane.
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Recent Self-Supervised Learning for Speech

o Contrastive Predictive Coding: "“Representation Learning
with Contrastive Predictive Coding,” Oord, Li & Vinyals, 2018

B exp (Score(x¢4k, ¢t))
Lepe = Z In > wex exp (Score(x, ¢t))

@ Autoregressive Predlctlve Coding: “Generative Pre-training
for Speech with Autoregressive Predictive Coding,” Chung &
Glass, 2020

N—n
L= |xitn—yil
i=1

e Masked Language Modeling (HUBERT): “HuBERT:
Self-Supervised Speech Representation Learning by Masked
Prediction of Hidden Units,” Hsu et al., 2021

[ Zl exp Score(Aot,ec))
oy C/ 1 exp (Score(Aoy, ecr))
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Summary: Discrete Disentangled Self-Supervised

Representations

@ Content is encoded using CPC, HuBERT, or VQ-VAE.
@ Pitch is encoded using a VQ-VAE:

zq(x) = argmin [|ze(x) — &l
J

V)L = VL

@ Speaker ID is encoded using a neural net trained to perform
speaker discrimination.



Self-Supervised Learning
oooe

Summary: Speech Resynthesis

@ Speech resynthesis uses transposed convolution:
[hl, ey h2L+1] = [0, z1, 0, z2, 0, ey 0, zZl, 0]
D
vi= ) Kihisj
j=—D

@ Reconstruction minimizes absolute error of the mel-frequency
spectrogram:

recon Z ”Qb ||17

@ GAN is used to avoid “regression to the mean,” to make sure
speech sounds good:

J
EG(Da G) = Z [‘Cadv(Ga Dj) + )\fm‘cfm(Ga Dj)] + )\rﬁrecon(G)
j=1
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Topics to be covered

o Material from exam 1: loudness, voder, pitch, speech
production

@ Material from exam 2: DTW, LPC, HMM
o New material:

e Voice conversion: formant synthesis, neural nets

o CTC: RNNs, CTC labeling, CTC forward-backward, loss
gradient

e Transformer: Dot-product similarity, Attention, Masking,
Positional encoding

o Self-supervised learning: CPC, HUBERT, VQ-VAE, Transposed
Convolution
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