SRDDSSR	VQ-VAE	Transposed Convolution	GAN	Summary

Lecture 26: Speech Resynthesis from Discrete Disentangled Self-Supervised Representations

Mark Hasegawa-Johnson All content CC-BY 4.0 unless otherwise specified.

ECE 537, Fall 2022

SRDDSSR	VQ-VAE	Transposed Convolution	GAN	Summary

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations

- 2 Vector-Quantized Variational Autoencoder
- Transposed Convolution
- Why Use Generative Adversarial Networks?

5 Summary

SRDDSSR	VQ-VAE	Transposed Convolution	GAN	Summary
●○○○○	00000000		0000000	000
Outline				

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations

- 2 Vector-Quantized Variational Autoencoder
- 3 Transposed Convolution
- 4 Why Use Generative Adversarial Networks?

5 Summary

0000	00000000	000000	0000000	000
"Disentangl	ed" Represe	ntations		

The goal is that:

- Self-supervised units (CPC, HuBERT, or VQ-VAE) should represent phonemes (i.e., text, content) and rhythm.
- Pitch VQVAE represents pitch movements.
- Speaker embedder represents speaker identity.
- We can then resynthesize original speech with low bit rate, or perform voice conversion or pitch conversion.

Wav - T samples

SRDDSSR	VQ-VAE	Transposed Convolution	GAN	Summary
○○○●○	00000000		0000000	000
Experiment	tal Tests			

• Low-bit-rate speech coding: resynthesize speech using discrete units, with as few bits/second as possible

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Voice Conversion: Synthesize same content, different voice
- Pitch Conversion: Synthesize same content & voice, but different pitch

 SRDDSSR
 VQ-VAE
 Transposed Convolution
 GAN
 Summary

 Background Knowledge Necessary to Understand This

 Article

- CPC, HuBERT: you know this
- VQ-VAE
- Transposed convolution (Speech resynthesis)
- Why use generative adversarial networks (GANs)?

SRDDSSR	VQ-VAE	Transposed Convolution	GAN	Summary
00000	●0000000		0000000	000
Outline				

- Speech Resynthesis from Discrete Disentangled Self-Supervised Representations
- 2 Vector-Quantized Variational Autoencoder
- **3** Transposed Convolution
- 4 Why Use Generative Adversarial Networks?

5 Summary

Review:	Autoencoder			
SRDDSSR	VQ-VAE	Transposed Convolution	GAN	Summary
00000	○●○○○○○○		0000000	000

An autoencoder is trained to reconstruct the data, x, from a low-dimensional latent variable, z. The loss is usually L1 or L2 error (minimum absolute error, MAE, or minimum mean-squared error, MMSE):

$$\mathcal{L}_{MAE} = E \left[|x - x'| \right]$$
$$\mathcal{L}_{MMSE} = E \left[||x - x'||^2 \right]$$

CC-SA 4.0,

https://commons.wikimedia.org/wiki/File:

Autoencoder_structure.png

 SRDDSSR
 VQ-VAE
 Transposed Convolution
 GAN
 Summary

 Variational Autoencoder (VAE)

A variational autoencoder (VAE) adds a requirement: *z* must have a known pdf. In this way, it becomes possible to generate novel, unseen data (use the VAE as a data generator). A typical formulation says that *z* must be Gaussian.

- The encoder computes z's mean and variance as functions of x.
- The decoder computes x' = g(z).
- Training maximizes a lower bound on *p*(*x*).

CC-SA 4.0,

https://commons.wikimedia.org/wiki/File:

Reparameterized_Variational_Autoencoder.png

In a VQ-VAE, the encoded input, $z_e(x)$, is quantized to the nearest codevector, e_j :

$$z_q(x) = \operatorname*{argmin}_j \|z_e(x) - e_j\|_2$$

Oord et al., Neural Discrete Representation Learning, 2017

During training, the gradient w.r.t. $z_e(x)$ is assumed to be equal to the gradient w.r.t. $z_q(x)$:

$$\nabla_{z_e(x)}\mathcal{L}\approx\nabla_{z_q(x)}\mathcal{L}$$

Oord et al., Neural Discrete Representation Learning, 2017

SRDDSSR	VQ-VAE	Transposed Convolution	GAN	Summary
00000	○00000000		0000000	000
The SRDD	SR Encoder			

The SRDDSR encoder computes three separate latent variables \mathbf{z}_{c} , $\mathbf{z}_{F_{0}}$, and z_{spk} :

- $\mathbf{z}_c = (z_{c,1}, \dots, z_{c,L})$ is a sequence of discrete content codes, $z_{c,i} \in \{0, 1, \dots, K\}$
- $\mathbf{z}_{F_0} = (z_{F_0,1}, \dots, z_{F_0,L})$ is a sequence of discrete F0 codes, $z_{F_0,i} \in \{0, 1, \dots, K'\}.$

• $z_{\rm spk} \in \Re^{256}$ is a speaker code. The speaker embedding network is pre-trained in a speaker verification task.

Wav - T samples

The SRDDSR decoder replaces $z_{c,i}$ and $z_{F_0,i}$ with real-valued decoder embeddings (from a lookup table or LUT), concatenates them with z_{spk} , and passes the result to a transposed-convolution synthesizer:

$$\mathbf{z} = [z_1, \dots, z_L]$$

$$= \begin{bmatrix} \mathsf{LUT}(z_{c,1}) \\ \mathsf{LUT}(z_{F_0,1}) \\ z_{\mathsf{spk}} \end{bmatrix}, \dots, \begin{bmatrix} \mathsf{LUT}(z_{c,L}) \\ \mathsf{LUT}(z_{F_0,L}) \\ z_{\mathsf{spk}} \end{bmatrix}, \end{bmatrix}$$

SRDDSSR	VQ-VAE	Transposed Convolution	GAN	Summary
00000	00000000		0000000	000
Outline				

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 2 Vector-Quantized Variational Autoencoder
- 3 Transposed Convolution
- 4 Why Use Generative Adversarial Networks?

5 Summary

SRDDSSR	VQ-VAE	Transposed Convolution	GAN	Summary
00000	0000000	○●○○○○	0000000	000
Transposed	l Convoluti	on		

Transposed convolution repeats the following steps across several layers:

Upsample the input, e.g.,

$$\mathbf{h} = [h_1, h_2, h_3, h_4, h_5, \dots, h_{2L-1}, h_{2L}, h_{2L+1}]$$

= [0, z_1, 0, z_2, 0, \ldots, 0, z_L, 0]

Onvolution:

$$\mathbf{y} = [y_1, \dots, y_{2L+1}]$$
$$y_i = \sum_{j=-D}^{D} K_j h_{i+j},$$

where $K_j \in \Re^{|y| \times |h|}$ is the weight matrix connecting output vector y_i to input vector h_{i+j} .

SRDDSSR	VQ-VAE	Transposed Convolution	GAN	Summary
00000	00000000		0000000	000

2D Transposed Convolution Example

Aqeel Anwar, https://github.com/aqeelanwar/conv_layers_animation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The HiFi-GAN synthesizer follows each transposed convolution with a multi-receptive-field (MRF) module. MRF is a bank of $|k_r|$ different dilated convolutions in parallel, each with a different dilation:

Kong, Kim & Bae, "HiFi-GAN," 2020

The final speech signal, $\hat{x}[n]$, is created by another transposed convolution layer, but this time, $k_i \in \Re^{|h|}$ is a vector:

$$\hat{\mathbf{x}} = [\hat{x}[1], \dots, \hat{x}[N]]$$
$$\hat{x}[n] = \sum_{j=-D}^{D} k_j^T h_{n+j}$$

The weights of the entire network are then trained in order to minimize a loss term that computes the mel-spectrogram of the input, $\phi(\mathbf{x})$, and the mel-spectrogram of the output, $\phi(\hat{\mathbf{x}})$, and compares them:

$$\mathcal{L}_{\mathsf{recon}} = \sum_{i=1}^{L} \|\phi(\mathbf{x}) - \phi(\mathbf{\hat{x}})\|_{1}$$

SRDDSSR	VQ-VAE	Transposed Convolution	GAN	Summary
00000	00000000		●000000	000
Outline				

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- 2 Vector-Quantized Variational Autoencoder
- Transposed Convolution
- 4 Why Use Generative Adversarial Networks?

5 Summary

- The word "regression" comes from Galton's *Regression* towards mediocrity in hereditary stature.
- It refers to the fact that a regression estimate is closer to average (more "mediocre," less "extreme") than the variable it estimates.
- Example:

$$\left[\begin{array}{c} x\\ z \end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{c} 0\\ 0 \end{array}\right], \left[\begin{array}{c} 1 & \rho\\ \rho & 1 \end{array}\right]\right)$$

Then the MMSE estimate of x, $\hat{x} = \rho z$, is more mediocre than x:

$$E\left[|\hat{x}|^2\right] \leq E\left[|x|^2\right]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 SRDDSSR
 VQ-VAE
 Transposed Convolution
 GAN
 Summary

 Why is this a problem for autoencoders?

Suppose that $\hat{\mathbf{x}}$ is estimated in order to minimize

$$\mathcal{L}_{\mathsf{recon}} = \sum_{i=1}^{L} \|\phi(\mathbf{x}) - \phi(\hat{\mathbf{x}})\|_1,$$

The law of "regression towards the mean" dictates that a neural net trained to minimize \mathcal{L}_{recon} will produce a $\hat{\mathbf{x}}$ that is closer to average than \mathbf{x} , and that will therefore sound sort of "smoothed out."

 SRDDSSR
 VQ-VAE
 Transposed Convolution
 GAN
 Summary

 00000
 0000000
 0000000
 0000000
 000

Generative Adversarial Network

A GAN is a pair of networks, trained to be one another's adversaries.

- The generator, G, tries to generate realistic speech signals.
- The **discriminator**, *D*, tries to discriminate real vs. generated speech.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 SRDDSSR
 VQ-VAE
 Transposed Convolution
 GAN
 Summary

 00000
 0000000
 0000000
 0000000
 0000000

 Generative Adversarial Network
 0000000
 0000000
 0000000

Suppose x is a real speech signal, and $\boldsymbol{\hat{x}}(z)$ is a generated speech signal.

• The **discriminator**, *D*, tries to generate a score *D*(**x**) that is close to 1 for real speech, and close to 0 for fake speech:

$$\mathcal{L}_D(G, D) = E_{\mathbf{x}} \left[f \left(1 - D(\mathbf{x}) \right) \right] + E_{\mathbf{z}} \left[f \left(D(\hat{\mathbf{x}}(\mathbf{z})) \right) \right]$$

• The **generator**, *G*, tries to generate speech that fools the discriminator:

$$\mathcal{L}_{\mathsf{adv}}(G, D) = E_{\mathsf{z}}\left[f\left(1 - D(\hat{\mathsf{x}}(\mathsf{z}))\right)\right]$$

The function f(D) can be D, D^2 , $\ln(D)$, or other (SRDDSR uses D^2).

Why might GANs be better than VAE?

- The optimum discriminator: if p(x|fake) > p(x|real), then call it "fake," otherwise call it "real."
- The optimum generator: make sure that the distribution of fake speech is exactly the same as the distribution of real speech, p(x|fake) = p(x|real).
- Thus a GAN converges to a solution where $\hat{\mathbf{x}}(\mathbf{z})$ has the same distribution as \mathbf{x} , not just the same average value.
- In order to match the distribution, the generator must generate speech samples that are not smoothed toward the mean; the discriminator must think they sound realistic.

- HiFi-GAN uses J different types of discriminators: multi-scale (several different scales of CNNs at input), and multi-rate (several different dilation rates).
- SRDDSR adds the VQ-VAE reconstruction loss, a "feature matching" loss L_{fm}(G, D_j), and the VAE reconstruction loss, thus

$$\mathcal{L}_{G}(D,G) = \sum_{j=1}^{J} \left[\mathcal{L}_{adv}(G,D_{j}) + \lambda_{fm} \mathcal{L}_{fm}(G,D_{j}) \right] + \lambda_{r} \mathcal{L}_{recon}(G)$$

SRDDSSR	VQ-VAE	Transposed Convolution	GAN	Summary
00000	00000000		0000000	●○○
Outline				

- Speech Resynthesis from Discrete Disentangled Self-Supervised Representations
- 2 Vector-Quantized Variational Autoencoder
- Transposed Convolution
- 4 Why Use Generative Adversarial Networks?

- Content is encoded using CPC, HuBERT, or VQ-VAE.
- Pitch is encoded using a VQ-VAE:

$$egin{aligned} & z_q(x) = \operatorname*{argmin}_{j} \| z_e(x) - e_j \|_2 \ &
onumber \ &
onum$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Speaker ID is encoded using a neural net trained to perform speaker discrimination.

• Speech resynthesis uses transposed convolution:

$$[h_1, \dots, h_{2L+1}] = [0, z_1, 0, z_2, 0, \dots, 0, z_L, 0]$$
$$y_i = \sum_{j=-D}^{D} K_j h_{i+j}$$

Reconstruction minimizes absolute error of the mel-frequency spectrogram:

$$\mathcal{L}_{\mathsf{recon}} = \sum_{i=1}^{L} \|\phi(\mathbf{x}) - \phi(\hat{\mathbf{x}})\|_1,$$

 GAN is used to avoid "regression to the mean," to make sure speech sounds good:

$$\mathcal{L}_{G}(D,G) = \sum_{j=1}^{J} \left[\mathcal{L}_{adv}(G,D_{j}) + \lambda_{fm} \mathcal{L}_{fm}(G,D_{j}) \right] + \lambda_{r} \mathcal{L}_{recon}(G)$$