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“Disentangled” Representations

The goal is that:

@ Self-supervised units (CPC, HuBERT, or VQ-VAE) should
represent phonemes (i.e., text, content) and rhythm.

@ Pitch VQVAE represents pitch movements.
@ Speaker embedder represents speaker identity.

@ We can then resynthesize original speech with low bit rate, or
perform voice conversion or pitch conversion.



SRDDSSR
0®00

Speech Resynthesis from Discrete Disentangled

Self-Supervised Representations (Polyak et al., 2021)
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Experimental Tests

o Low-bit-rate speech coding: resynthesize speech using discrete
units, with as few bits/second as possible

@ Voice Conversion: Synthesize same content, different voice

@ Pitch Conversion: Synthesize same content & voice, but
different pitch
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Background Knowledge Necessary to Understand This

Article

e CPC, HuBERT: you know this
e VQ-VAE
@ Transposed convolution (Speech resynthesis)

e Why use generative adversarial networks (GANs)?
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© Vector-Quantized Variational Autoencoder
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Review: Autoencoder

An autoencoder is trained to
reconstruct the data, x, from a et e
low-dimensional latent variable, Vo R '

z. The loss is usually L1 or L2
error (minimum absolute error, AN
MAE, or minimum mean-squared P B N

error, MMSE):

encoder

decoder
Lmae = E [|x = X|]

CC-SA 4.0,
Lamse = E [||x — X||?]

https://commons.wikimedia.org/wiki/File:

Autoencoder_structure.png


https://commons.wikimedia.org/wiki/File:Autoencoder_structure.png
https://commons.wikimedia.org/wiki/File:Autoencoder_structure.png
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Variational Autoencoder (VAE)

A variational autoencoder (VAE)
adds a requirement: z must have
a known pdf. In this way, it
becomes possible to generate
novel, unseen data (use the VAE

as a data generator). A typical “
formulation says that z must be s R
Gaussian.
@ The encoder computes z's
mean and variance as CC-SA 4.0,
fu nCtions Of X. https://commons.wikimedia.org/wiki/File:
[} The decoder Computes Reparameterized_Variational_Autoencoder.png
r_
x' = g(2).

@ Training maximizes a lower
bound on p(x).


https://commons.wikimedia.org/wiki/File:Reparameterized_Variational_Autoencoder.png
https://commons.wikimedia.org/wiki/File:Reparameterized_Variational_Autoencoder.png
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Vector-Quantized Variational Autoencoder (VQ-VAE)

In a VQ-VAE, the encoded input, z¢(x), is quantized to the nearest
codevector, e;j:

zq(x) = argmin [|ze(x) — &l
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Oord et al., Neural Discrete Representation Learning, 2017
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Vector-Quantized Variational Autoencoder (VQ-VAE)

During training, the gradient w.r.t. z(x) is assumed to be equal
to the gradient w.r.t. z;(x):
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The SRDDSR Encoder

The SRDDSR encoder computes three separate latent variables z,
zr,, and Zgpk:

® zc =(zc1,...,2c,) is a sequence of discrete content codes,
Zc,i € {0,1,...,K}
® zr, = (2ry1,---, 2R, 1) is @ sequence of discrete FO codes,

ZFR,i € {0, 1,..., K/}.

@ Zpk € 256 is a speaker code. The speaker embedding
network is pre-trained in a speaker verification task.
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Speech Resynthesis from Discrete Disentangled

Self-Supervised Representations (Polyak et al., 2021)
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The SRDDSR Decoder

The SRDDSR decoder replaces z. ; and zf, ; with real-valued
decoder embeddings (from a lookup table or LUT), concatenates
them with z,, and passes the result to a transposed-convolution
synthesizer:

zZ= [zla"sz]
LUT(z1) LUT (z,1)
= LUT(ZFO’l) g Tty LUT(ZFO’L) y

Zspk Zspk
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Transposed Convolution

Transposed convolution repeats the following steps across several
layers:

© Upsample the input, e.g.,

h =T[h1,ho, h3, ha,hs, ... hop_1, hop, hopiq]
= [072170722707"'707ZL70]

@ Convolution:

y= [)/1,---,}/2L+1]

D
yi= Y Kihisj,
j=—D

where K; € RIYI¥Ihl s the weight matrix connecting output
vector y; to input vector hj;.
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2D Transposed Convolution Example

Type: transposed conv - Stride: 2 Padding: 1

Input Output

(=)o+]

Ageel Anwar, https://github.com/aqeelanwar/conv_layers_animation


https://github.com/aqeelanwar/conv_layers_animation
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Multi-Receptive-Field

The HiFi-GAN synthesizer follows each transposed convolution
with a multi-receptive-field (MRF) module. MRF is a bank of ||
different dilated convolutions in parallel, each with a different
dilation:

Mel-Spectrogram ‘

for m=1 .. |‘D,.[n][

ResBlock[1] h or 1=1 .|ID

kemel: k,[1] |11 Jor L= 1 i mll
I
I

dilations: D,-[1]

k,[l] x1 ConvTranspose
stride: k,[1]/2, channels: h, /2!
T

k.[n]x1 Conv
dilation: D,.[n,m, []

Raw Waveform

Kong, Kim & Bae, "HiFi-GAN,"” 2020
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SRDDSR Speech Synthesis from Transposed Convolution

The final speech signal, X[n], is created by another transposed
convolution layer, but this time, k; € R/l is a vector:
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SRDDSR Speech Synthesis from Transposed Convolution

The weights of the entire network are then trained in order to
minimize a loss term that computes the mel-spectrogram of the

input, ¢(x), and the mel-spectrogram of the output, ¢(X), and
compares them:

Lrecon Z H¢ )IE ||1
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@ Why Use Generative Adversarial Networks?



Why is “Regression” called “Regression”?

@ The word “regression” comes from Galton's Regression
towards mediocrity in hereditary stature.

@ It refers to the fact that a regression estimate is closer to
average (more “mediocre,” less "extreme”) than the variable

MR

Then the MMSE estimate of x, X = pz, is more mediocre

than x:
£ [4) <

o Example:



Why is this a problem for autoencoders?

Suppose that X is estimated in order to minimize

recon — Z ||¢ )? ||17

The law of “regression towards the mean” dictates that a neural
net trained to minimize Lyecon Will produce a X that is closer to
average than x, and that will therefore sound sort of “smoothed

out.



Generative Adversarial Network

A GAN is a pair of networks, trained to be one another's
adversaries.

@ The generator, G, tries to generate realistic speech signals.

@ The discriminator, D, tries to discriminate real vs. generated
speech.



Generative Adversarial Network

Suppose x is a real speech signal, and %(z) is a generated speech
signal.

e The discriminator, D, tries to generate a score D(x) that is
close to 1 for real speech, and close to 0 for fake speech:

Lp(G,D) = E[f (1 = D(x))] + E [f (D(X(2)))]

@ The generator, G, tries to generate speech that fools the
discriminator:

ﬁadv(G7 D) =k [f(l - D()’E(Z)))]

The function f(D) can be D, D2, In(D), or other (SRDDSR uses
D?).



Why might GANs be better than VAE?

@ The optimum discriminator: if p(x|fake) > p(x|real), then call
it “fake,” otherwise call it “real.”

@ The optimum generator: make sure that the distribution of
fake speech is exactly the same as the distribution of real
speech, p(x|fake) = p(x|real).

@ Thus a GAN converges to a solution where X(z) has the same
distribution as x, not just the same average value.

@ In order to match the distribution, the generator must
generate speech samples that are not smoothed toward the
mean; the discriminator must think they sound realistic.



GAN Loss in HiFi-GAN and SRDDSR

o HiFi-GAN uses J different types of discriminators: multi-scale
(several different scales of CNNs at input), and multi-rate
(several different dilation rates).

@ SRDDSR adds the VQ-VAE reconstruction loss, a “feature
matching” loss L#n(G, D;), and the VAE reconstruction loss,
thus

J
L¢(D,G) = Z[ﬁadv (G, Dj) + AmLem( G, D) + ArLrecon(G)
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Summary: Discrete Disentangled Self-Supervised

Representations

@ Content is encoded using CPC, HuBERT, or VQ-VAE.
@ Pitch is encoded using a VQ-VAE:

zq(x) = argmin [|ze(x) — &l
J

V)L = VL

@ Speaker ID is encoded using a neural net trained to perform
speaker discrimination.

Summary
°0
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Summary: Speech Resynthesis

@ Speech resynthesis uses transposed convolution:
[hl, ey h2L+1] = [0, z1, 0, z2, 0, ey 0, zZl, 0]
D
vi= ) Kihisj
j=—D

@ Reconstruction minimizes absolute error of the mel-frequency
spectrogram:

recon Z ”Qb ||17

@ GAN is used to avoid “regression to the mean,” to make sure
speech sounds good:

J
EG(Da G) = Z [‘Cadv(Ga Dj) + )\fm‘cfm(Ga Dj)] + )\rﬁrecon(G)
j=1
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