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What is Unsupervised Learning?

@ Supervised learning: given pairs of data, (x;,y;), learn a
mapping f(x) = y.
@ Unsupervised learning: given unlabeled training examples,
x;, learn something about them.
e Can x; be decomposed into signal + noise?
e Can we group the x's into “natural classes,” i.e., groups of
tokens that are similar to one another?
o Can we design a classifier that puts x; into its natural class?
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Some types of unsupervised learning

e Manifold learning: decompose x; into signal + noise
@ Clustering: group the x's into natural classes

o Self-supervised learning: learn a classifier that puts x; into
its natural class
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@ Signals lie on a manifold if
some perturbations are
impossible (“perpendicular”
to the manifold)

o If signals are on a manifold,
then perturbations
perpendicular to the
manifold are always noise,

and can be ignored. B
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Speech Manifolds

@ The signal manifold: Each sample is
s[n] = d[n] + >_ ams[n — m]. The excitation, d[n], is sparse:
only about 10% of its samples should be nonzero.

@ The articulatory manifold: The formant frequencies and
bandwidths change slowly as a function of time, because they
are shaped by positions of the tongue, jaw, and lips, and those
things have mass.
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The articulatory manifold (Deng et al., Interspeech 2010)
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Fig. 4. Top to bottom: Original spectrogram from the test set;
reconstruction from the 312-bit VQ coder; reconstruction from the
312-bit auto-encoder (2304-1000-312); coding errors as a function of
time for the VQ coder (blue) and auto-encoder (red); spectrogram of
the VQ coder residual; spectrogram of the auto-encoder residual.
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PCA: Manifold = Hyperplane

A
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If the signal is constrained to lie N Sarie et

on a hyperplane, then the e

hyperplane can be found using e

principal components analysis

(PCA). e
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PCA is computed by a one-layer autoencoder
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Two-layer autoencoder can compute a nonlinear manifold

input output

@ A two-layer autoencoder N
constrains the data, x, to lie i NS . ,
on a nonlinear manifold of X z i
dimension = dim(z). NIRRT

@ The first layer nonlinearly
transforms the input, then ancoder

the second layer computes
PCA of the result. CC-5A 4.0,
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Autoencoder_structure.png
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Summary: Manifolds

@ Speech lies on manifolds of (at least) two timescales
o Signal manifold: samples are predictable from previous
samples
e Articulatory manifold: formant frequencies and bandwidths
are predictable from previous formants and bandwidths
@ By learning to represent the manifolds, the early layers of an
ASR learn to reject irrelevant variation (noise) and keep only
relevant variation (signal)

@ Autoencoders explicitly learn manifolds
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@ The idea of
clustering is
to group the
observed data
into natural
classes (things
that sound
similar).

o After grouping
them into
natural classes,
we can then
assign a label
to each natural
class.
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Peterson and Barney, 1952.
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K_ M €eans C I USterl ng (https://en.wikipedia.org/wiki/K-means_clustering)
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Gaussian Mixture Modeling

Gaussian mixture modeling is like K-means, except that each
cluster has a different covariance matrix. Result can be very similar
to a natural vowel space.
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Fig. 1, “Building a Statistical Model of the Vowel Space for Phoneticians,” (c) Matthew Aylett, 1998
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@ Self-Supervised Classifier Learning: Matched-Filter Example
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Unsupervised Classifier Example

In 1965, Scudder (“Probability of Error of Some Adaptive
Pattern-Recognition Machines") considered the following example:

@ /1,...,2Zp,...Iis a series of vectors.

e Each vector either contains signal + noise (Z, = X + N,), or
just noise (Z, = N,).

@ The signal, X, is the same every time it appears, but it is
unknown.

@ The noise, N,, is zero-mean Gaussian noise with covariance
matrix Ky = o21.
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Unsupervised Classifier Example

Here are the questions Scudder asked:

@ Suppose a classifier was asked to determine whether or not
the pattern is present. What it the optimum decision rule?

@ Suppose a classifier was trained without any training labels.
Can it learn the optimum decision rule?



Self-Supervision
00®00000

The Supervised Case

First, consider the supervised case. We don't know X, but we are
given labels: 8, =1 if Z, = X + N, otherwise 8, = 0. The
optimum decision rule turns out to be:

@ Update the matched filter covariance estimate:

Koot = (K 0,)
@ Update the matched filter estimate:
Hnt1 = Hn+ Ky ' Kns1(Za — Hp)0n
e Calculate the log likelihood ratio (LLR):
Qn = ZoKy ' Zo — (Zn — Hn) T (Ki + Kn) " (Zn — Hn)
@ Threshold the LLR:

b _ 1 Qp > threshold
"7 10 Q,< threshold



In the supervised case, as
n— oo,

@ The matched filter
converges H, — X.

@ The matched filter
covariance disappears
K,—0

@ The LLR converges to

a linear function of
Zy:

Qn — 2H, K\1 Z,—consta \\ ———

@ The optimal classifier
converges to a linear
classifier.
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Fig. 2, “Probability of Error of Some Adaptive Pattern-Recognition

Machines”, (c) IEEE, 1965
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The Self-supervised Case

Now, consider the self-supervised case. We don't know X, and we
don’'t know #,. Instead, all we have is our own classifier output, 6,
at each time step. Can we learn the optimum classifier?

o Calculate the log likelihood ratio (LLR):
Qn = ZoKy ' Zn — (Zo — Ha) " (Kn + Kn) ™1 (Zn — Hn)
@ Threshold the log likelihood ratio:

B { 1 @, > threshold
=

0 0 Qp < threshold

@ Update the matched filter covariance estimate:
1, 4 -1\t
Ko = (K +6aK3")

@ Update the matched filter estimate:
Hn+1 = Hn + K[\_/lKn+l(Zn - Hn)é\n
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Figure at right shows the
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@ This is a good thing!
Some of the large
vectors are, indeed,
signals. But not all!

Fig. 2, “Probability of Error of Some Adaptive Pattern-Recognition

Machines”, (c) IEEE, 1965
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The self-supervised learner
learns a “matched filter,”
H,, such that

@ The hyperplane is
HT Z, = threshold.

@ H, is the average of
all of the Z vectors
on the right side of
the hyperplane.
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Fig. 4, “Probability of Error of Some Adaptive Pattern-Recognition

Machines”, (c) IEEE, 1965
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Summary: Scudder’'s Theory of Self-Supervised Learning

@ The classifier learns to call all big vectors “signal,” and all
small vectors “noise.”

@ It is biased: small signal vectors get misclassified as “noise.”

@ There is a threshold effect: if the noise covariance matrix, Ky,
is too large, then the learner fails to converge.
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Summary

@ Manifold learning
e Learn a low-dimensional representation that captures most of
the signal variation
o Clustering
o Classify each token to its nearest mean
o Recompute each mean as the average of its tokens
@ Self-supervised learning

o The hyperplane is H] Z, = threshold.
e H, is the average of all of the Z vectors on the right side of
the hyperplane.
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