
Attention Transformer Scaled Dot-Product Attention Multi-Head Attention Why? Conclusion

Lecture 23: “Attention is All You Need”

Mark Hasegawa-Johnson
All content CC-BY 4.0 unless otherwise specified.

ECE 537, Fall 2022

https://creativecommons.org/licenses/by/4.0/


Attention Transformer Scaled Dot-Product Attention Multi-Head Attention Why? Conclusion

1 Review: Attention and Self-Attention

2 Transformer

3 Scaled Dot-Product Attention

4 Multi-Head Attention

5 Why Self-Attention?

6 Conclusions



Attention Transformer Scaled Dot-Product Attention Multi-Head Attention Why? Conclusion

Outline

1 Review: Attention and Self-Attention

2 Transformer

3 Scaled Dot-Product Attention

4 Multi-Head Attention

5 Why Self-Attention?

6 Conclusions



Attention Transformer Scaled Dot-Product Attention Multi-Head Attention Why? Conclusion

Attention

Context Vector: c(qi ) =
n∑

j=1

αi ,jv
j

Attention: αi ,j =
exp

(
Similarity(qi , k j)

)∑n
j=1 exp (Similarity(qi , k j))

The query, q (sometimes qi ), is the vector whose context we
want

The key, k (sometimes k j), tells us whether or not v j is useful
context

The value, v (sometimes v j), provides the actual context



Attention Transformer Scaled Dot-Product Attention Multi-Head Attention Why? Conclusion

Inter-Attention

The query, q (sometimes qi ), is the vector whose context we
want

For example, the previous layer or (i − 1)st time-step of the
decoder

The key, k (sometimes k j), tells us whether or not v j is useful
context

For example, something computed from the jth timestep of the
encoder

The value, v (sometimes v j), provides the actual context

For example, something computed from the jth timestep of the
encoder



Attention Transformer Scaled Dot-Product Attention Multi-Head Attention Why? Conclusion

Self-Attention

The query, q (sometimes qi ), is the vector whose context we
want

For example, something computed from the i th timestep of the
encoder

The key, k (sometimes k j), tells us whether or not v j is useful
context

For example, something computed from the jth timestep of the
encoder

The value, v (sometimes v j), provides the actual context

For example, something computed from the jth timestep of the
encoder



Attention Transformer Scaled Dot-Product Attention Multi-Head Attention Why? Conclusion

Difference Between Attention and Self-Attention

Attention computes the context vector c(q) by summarizing
information from a different data source (e.g., encoder vectors
providing context for a decoder vector).

Self-attention computes the context vector c(q) by
summarizing temporally-distant information from the same
data source (e.g., encoder vectors providing context for an
encoder vector).



Attention Transformer Scaled Dot-Product Attention Multi-Head Attention Why? Conclusion

Outline

1 Review: Attention and Self-Attention

2 Transformer

3 Scaled Dot-Product Attention

4 Multi-Head Attention

5 Why Self-Attention?

6 Conclusions



Attention Transformer Scaled Dot-Product Attention Multi-Head Attention Why? Conclusion

The Transformer

Vaswani et al., 2017, Figure 1



Attention Transformer Scaled Dot-Product Attention Multi-Head Attention Why? Conclusion

Outline

1 Review: Attention and Self-Attention

2 Transformer

3 Scaled Dot-Product Attention

4 Multi-Head Attention

5 Why Self-Attention?

6 Conclusions



Attention Transformer Scaled Dot-Product Attention Multi-Head Attention Why? Conclusion

Scaled Dot-Product Attention

Vaswani et al., 2017, Figure 2(a)



Attention Transformer Scaled Dot-Product Attention Multi-Head Attention Why? Conclusion

The Data Matrices

Q =

 q1

...
qn

 , K =

 k1

...
kn

 , V =

 v1

...
vn


q = qi ∈ <dk is a query vector

k = k j ∈ <dk is a key vector

v = v j ∈ <dv is a value vector



Attention Transformer Scaled Dot-Product Attention Multi-Head Attention Why? Conclusion

The Dot-Product

QKT =

 q1k1,T · · · q1kn,T

...
. . .

...
qnk1,T · · · qnkn,T

 ,
is the matrix whose (i , j)th element is the dot product between qi

and k j .



Attention Transformer Scaled Dot-Product Attention Multi-Head Attention Why? Conclusion

The Scaled Dot-Product

Suppose that qi and k j are each normalized so that they are
independent Gaussian random variables with zero mean and unit
variance. Then

qik j ,T =

dk∑
t=1

qitk
j
t

is a difference of chi-squared random variables, with zero mean and
variance dk . We can re-normalize it (to zero mean and unit
variance) by computing

qik j ,T√
dk

=
1√
dk

dk∑
t=1

qitk
j
t



Attention Transformer Scaled Dot-Product Attention Multi-Head Attention Why? Conclusion

Scaled Dot-Product Attention

We assume that q and k have been transformed by some preceding
neural net, so qkT is large if and only if they should be considered
similar. Therefore the similarity score is

ei ,j =
1√
dk

qik j ,T ,

and the corresponding attention weight is

αi ,j = softmax(ei ,j) =
exp(ei ,j)∑n
j=1 exp(ei ,j) α1,1 · · · α1,n

...
. . .

...
αn,1 · · · αn,n

 = softmax

(
QKT

√
dk

)



Attention Transformer Scaled Dot-Product Attention Multi-Head Attention Why? Conclusion

Scaled Dot-Product Attention

The context summary vector is then

c(qi ) =
n∑

j=1

αi ,jv
j

If we stack these up into a matrix, we get c(q1)
...

c(qn)

 = softmax

(
QKT

√
dk

) v1

...
vn





Attention Transformer Scaled Dot-Product Attention Multi-Head Attention Why? Conclusion

Masking

If q, k and v are decoder vectors being produced autoregressively
(e.g., decoder self-attention), then c(qi ) can only depend on
values of v j for j < i :

c(qi ) =
i−1∑
j=1

αi ,jv
j

This can be done by setting αi ,j = 0 for j ≥ i . In turn, this can be
done by masking the similarity scores as follows:

ei ,j =
1√
dk

qik j ,T + mj
i ,

where

mj
i =

{
0 j < i
−∞ j ≥ i



Attention Transformer Scaled Dot-Product Attention Multi-Head Attention Why? Conclusion

Scaled Dot-Product Attention

Attention(Q,K ,V ) = softmax

(
QKT

√
dk

)
V

Vaswani et al., 2017, Figure 2(a)



Attention Transformer Scaled Dot-Product Attention Multi-Head Attention Why? Conclusion

Outline

1 Review: Attention and Self-Attention

2 Transformer

3 Scaled Dot-Product Attention

4 Multi-Head Attention

5 Why Self-Attention?

6 Conclusions



Attention Transformer Scaled Dot-Product Attention Multi-Head Attention Why? Conclusion

Multi-Head Attention: Why

Dot-product attention assumes that qi and k j have already
been transformed by some neural network so that qik j ,T is
large if and only if v j is an important part of the context.

What if you need several types of context? One type tells you
about speaker ID, one type tells you about dialect, one type
tells you the topic of conversation, etc.

Multi-Head Attention computes many different types of q
vectors, and many different types of k vectors, so that
different types of context may be accumulated in parallel.



Attention Transformer Scaled Dot-Product Attention Multi-Head Attention Why? Conclusion

Multi-Head Attention

Vaswani et al., 2017, Figure 2(b)



Attention Transformer Scaled Dot-Product Attention Multi-Head Attention Why? Conclusion

Multi-Head Attention

headi = Attention
(
QWQ

i ,KW
K
i ,VW

V
i

)
= softmax

(
QWQ

i WK ,T
i KT

√
dk

)
VW V

i ,

where the weight matrices WQ
i , WK

i , and W V
i , for 1 ≤ i ≤ h, are

learned matrices summarizing the type of context accumulated in
each head. Then

MultiHead(Q,K ,V ) = Concat(head1, . . . , headh)WO ,

where WO is a final transformation that can, e.g., combine
information from different heads in a learned manner.



Attention Transformer Scaled Dot-Product Attention Multi-Head Attention Why? Conclusion

Outline

1 Review: Attention and Self-Attention

2 Transformer

3 Scaled Dot-Product Attention

4 Multi-Head Attention

5 Why Self-Attention?

6 Conclusions



Attention Transformer Scaled Dot-Product Attention Multi-Head Attention Why? Conclusion

Why Self-Attention?

Encoder-decoder attention is well-established, but the
transformations that compute q and k can be (1)
convolutional, (2) recurrent, or (3) self-attention. When is
self-attention the best approach?

Recurrent networks have to propagate information from the
start of the sequence to the end (path length=n). Information
can get forgotten.

Convolutional networks are much quicker, but need to learn
weights covering the entire width of the kernel (k). For
reasons of data-efficient learning, most systems therefore use
small k .

Self-attention is as fast as convolution, without pre-trained
kernel weights. Instead, the attention weights are based on
similarity, which is computed using a more efficient network.
Therefore, the “kernel width” for self-attention is usually
k = n.



Attention Transformer Scaled Dot-Product Attention Multi-Head Attention Why? Conclusion

Why Self-Attention?

Layer Type Complexity/Layer Path Length

Recurrent O{nd2} O{n}
Convolutional O{knd2} O{logk(n)}
Self-Attention O{n2d} O{1}

n = sequence length

d = representation dimension

k = kernel dimension



Attention Transformer Scaled Dot-Product Attention Multi-Head Attention Why? Conclusion

Outline

1 Review: Attention and Self-Attention

2 Transformer

3 Scaled Dot-Product Attention

4 Multi-Head Attention

5 Why Self-Attention?

6 Conclusions



Attention Transformer Scaled Dot-Product Attention Multi-Head Attention Why? Conclusion

Because of the shorter
pathlength, Transformer
trains faster than LSTM.

Transformer sometimes
overtrains (time alignment is
too flexible).

Overtraining can be
compensated by data
augmentation, giving it
exactly the same accuracy
as LSTM. Zeyer et al., “A Comparison of Transformer and LSTM

Encoder Decoder Models for ASR,” (c) IEEE, 2019



Attention Transformer Scaled Dot-Product Attention Multi-Head Attention Why? Conclusion

Summary

Attention(Q,K ,V ) = softmax

(
QKT

√
dk

)
V

headi = Attention
(
QWQ

i ,KW
K
i ,VW

V
i

)
MultiHead(Q,K ,V ) = Concat(head1, . . . , headh)WO ,


	Review: Attention and Self-Attention
	Transformer
	Scaled Dot-Product Attention
	Multi-Head Attention
	Why Self-Attention?
	Conclusions

