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Attention

Context Vector: c(qi ) =
n∑

j=1

αi ,jv
j

Attention: αi ,j =
exp

(
Similarity(qi , k j)

)∑n
j=1 exp (Similarity(qi , k j))

The query, q (sometimes qi ), is the vector whose context we
want

The key, k (sometimes k j), tells us whether or not v j is useful
context

The value, v (sometimes v j), provides the actual context
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Inter-Attention

The query, q (sometimes qi ), is the vector whose context we
want

For example, the previous layer or (i − 1)st time-step of the
decoder

The key, k (sometimes k j), tells us whether or not v j is useful
context

For example, something computed from the jth timestep of the
encoder

The value, v (sometimes v j), provides the actual context

For example, something computed from the jth timestep of the
encoder
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Self-Attention

The query, q (sometimes qi ), is the vector whose context we
want

For example, something computed from the i th timestep of the
encoder

The key, k (sometimes k j), tells us whether or not v j is useful
context

For example, something computed from the jth timestep of the
encoder

The value, v (sometimes v j), provides the actual context

For example, something computed from the jth timestep of the
encoder
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Difference Between Attention and Self-Attention

Attention computes the context vector c(q) by summarizing
information from a different data source (e.g., encoder vectors
providing context for a decoder vector).

Self-attention computes the context vector c(q) by
summarizing temporally-distant information from the same
data source (e.g., encoder vectors providing context for an
encoder vector).
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The Transformer

Vaswani et al., 2017, Figure 1
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Scaled Dot-Product Attention

Vaswani et al., 2017, Figure 2(a)
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The Data Matrices

Q =

 q1

...
qn

 , K =

 k1

...
kn

 , V =

 v1

...
vn


q = qi ∈ <dk is a query vector

k = k j ∈ <dk is a key vector

v = v j ∈ <dv is a value vector
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The Dot-Product

QKT =

 q1k1,T · · · q1kn,T

...
. . .

...
qnk1,T · · · qnkn,T

 ,
is the matrix whose (i , j)th element is the dot product between qi

and k j .
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The Scaled Dot-Product

Suppose that qi and k j are each normalized so that they are
independent Gaussian random variables with zero mean and unit
variance. Then

qik j ,T =

dk∑
t=1

qitk
j
t

is a difference of chi-squared random variables, with zero mean and
variance dk . We can re-normalize it (to zero mean and unit
variance) by computing

qik j ,T√
dk

=
1√
dk

dk∑
t=1

qitk
j
t
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Scaled Dot-Product Attention

We assume that q and k have been transformed by some preceding
neural net, so qkT is large if and only if they should be considered
similar. Therefore the similarity score is

ei ,j =
1√
dk

qik j ,T ,

and the corresponding attention weight is

αi ,j = softmax(ei ,j) =
exp(ei ,j)∑n
j=1 exp(ei ,j) α1,1 · · · α1,n

...
. . .

...
αn,1 · · · αn,n

 = softmax

(
QKT

√
dk

)
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Scaled Dot-Product Attention

The context summary vector is then

c(qi ) =
n∑

j=1

αi ,jv
j

If we stack these up into a matrix, we get c(q1)
...

c(qn)

 = softmax

(
QKT

√
dk

) v1

...
vn
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Masking

If q, k and v are decoder vectors being produced autoregressively
(e.g., decoder self-attention), then c(qi ) can only depend on
values of v j for j < i :

c(qi ) =
i−1∑
j=1

αi ,jv
j

This can be done by setting αi ,j = 0 for j ≥ i . In turn, this can be
done by masking the similarity scores as follows:

ei ,j =
1√
dk

qik j ,T + mj
i ,

where

mj
i =

{
0 j < i
−∞ j ≥ i
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Scaled Dot-Product Attention

Attention(Q,K ,V ) = softmax

(
QKT

√
dk

)
V

Vaswani et al., 2017, Figure 2(a)
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Multi-Head Attention: Why

Dot-product attention assumes that qi and k j have already
been transformed by some neural network so that qik j ,T is
large if and only if v j is an important part of the context.

What if you need several types of context? One type tells you
about speaker ID, one type tells you about dialect, one type
tells you the topic of conversation, etc.

Multi-Head Attention computes many different types of q
vectors, and many different types of k vectors, so that
different types of context may be accumulated in parallel.
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Multi-Head Attention

Vaswani et al., 2017, Figure 2(b)
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Multi-Head Attention

headi = Attention
(
QWQ

i ,KW
K
i ,VW

V
i

)
= softmax

(
QWQ

i WK ,T
i KT

√
dk

)
VW V

i ,

where the weight matrices WQ
i , WK

i , and W V
i , for 1 ≤ i ≤ h, are

learned matrices summarizing the type of context accumulated in
each head. Then

MultiHead(Q,K ,V ) = Concat(head1, . . . , headh)WO ,

where WO is a final transformation that can, e.g., combine
information from different heads in a learned manner.
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Why Self-Attention?

Encoder-decoder attention is well-established, but the
transformations that compute q and k can be (1)
convolutional, (2) recurrent, or (3) self-attention. When is
self-attention the best approach?

Recurrent networks have to propagate information from the
start of the sequence to the end (path length=n). Information
can get forgotten.

Convolutional networks are much quicker, but need to learn
weights covering the entire width of the kernel (k). For
reasons of data-efficient learning, most systems therefore use
small k .

Self-attention is as fast as convolution, without pre-trained
kernel weights. Instead, the attention weights are based on
similarity, which is computed using a more efficient network.
Therefore, the “kernel width” for self-attention is usually
k = n.
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Why Self-Attention?

Layer Type Complexity/Layer Path Length

Recurrent O{nd2} O{n}
Convolutional O{knd2} O{logk(n)}
Self-Attention O{n2d} O{1}

n = sequence length

d = representation dimension

k = kernel dimension
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Because of the shorter
pathlength, Transformer
trains faster than LSTM.

Transformer sometimes
overtrains (time alignment is
too flexible).

Overtraining can be
compensated by data
augmentation, giving it
exactly the same accuracy
as LSTM. Zeyer et al., “A Comparison of Transformer and LSTM

Encoder Decoder Models for ASR,” (c) IEEE, 2019
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Summary

Attention(Q,K ,V ) = softmax

(
QKT

√
dk

)
V

headi = Attention
(
QWQ

i ,KW
K
i ,VW

V
i

)
MultiHead(Q,K ,V ) = Concat(head1, . . . , headh)WO ,
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