Cauchy-Schwartz	Smart PCA	Encoder-Decoder Sequence-to-Sequence Models	Attention	Self-Attention	Summary

Lecture 22: Background for "Attention is All You Need"

Mark Hasegawa-Johnson All content CC-BY 4.0 unless otherwise specified.

ECE 537, Fall 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Cauchy-Schwartz	Smart PCA	Encoder-Decoder Sequence-to-Sequence Models	Attention	Self-Attention	Summary

1 The Cauchy-Schwartz Inequality and Cosine Distance

2 Smart PCA

- 3 Encoder-Decoder Sequence-to-Sequence Models
- 4 Attention
- 5 Intra-Attention (Self-Attention) vs. Inter-Attention

Cauchy-Schwartz ●○○○○○	Smart PCA 000000	Encoder-Decoder Sequence-to-Sequence Models	Attention 000000	Self-Attention	Summary 00
Outline					

1 The Cauchy-Schwartz Inequality and Cosine Distance

- 2 Smart PCA
- 3 Encoder-Decoder Sequence-to-Sequence Models
- 4 Attention
- 5 Intra-Attention (Self-Attention) vs. Inter-Attention

6 Summary

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

The Cauchy-Schwartz Inequality

The Cauchy-Schwart inequality says that, for any two vectors $\vec{x} = [x_1, \dots, x_N]^T$ and $\vec{y} = [y_1, \dots, y_N]^T$, $|\vec{x}^T \vec{y}| \le ||\vec{x}||^2 ||\vec{y}||^2$

If we define the unit vectors as follows,

$$\hat{x} = rac{ec{x}}{\|ec{x}\|}, \quad \hat{y} = rac{ec{y}}{\|ec{y}\|},$$

then the Cauchy-Schwartz inequality says that

$$-1 \leq \hat{x}^T \hat{y} \leq 1$$

Cauchy-Schwartz Smart PCA Encoder-Decoder Sequence-to-Sequence Models Attention Self-Attention Summary

The Cauchy-Schwartz Inequality: Proof

Suppose we have a particular \vec{x} , and we want to:

choose y₁,..., y_N in order to maximize/minimize the dot product,

$$\vec{x}^T \vec{y} = \sum_{i=1}^N x_i y_i$$

• subject to the constraint that the length of \vec{y} is fixed, say,

$$L^2 = \sum_{i=1}^N y_i^2$$

This can be done by choosing y_1, \ldots, y_N to maximize/minimize the following Lagrangian:

$$\mathcal{L}(\vec{y}) = \sum_{i=1}^{N} x_i y_i - \frac{\kappa}{2} \left(\sum_{i=1}^{N} y_i^2 - L^2 \right)$$

 Cauchy-Schwartz
 Smart PCA
 Encoder-Decoder Sequence-to-Sequence Models
 Attention
 Self-Attention
 Summary

 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000

The Cauchy-Schwartz Inequality: Proof

$$\begin{split} \mathcal{L}(\vec{y}) &= \sum_{i=1}^{N} x_i y_i - \frac{\kappa}{2} \left(\sum_{i=1}^{N} y_i^2 - L^2 \right) \\ \text{Setting } \frac{\partial \mathcal{L}}{\partial y_i} &= 0 \text{ yields:} \\ y_i &= \frac{x_i}{\kappa}, \end{split}$$

There are two values of κ that satisfy the constraint, and they give the maximizer/minimizer of the dot product, respectively:

$$\kappa = \pm \frac{\|\vec{x}\|}{\|\vec{y}\|}$$

Cauchy-Schwartz 0000€0	Smart PCA 000000	Encoder-Decoder Sequence-to-Sequence Models	Attention 000000	Self-Attention	Summary 00		
Cosine Distance							

The Cauchy-Schwartz inequality can be written as:

 $-1 \leq \hat{x}^T \hat{y} \leq 1,$

where $\hat{x} = \frac{\vec{x}}{\|\vec{x}\|}$ and $\hat{y} = \frac{\vec{y}}{\|\vec{y}\|}$. This is an *N*-dimensional generalization of the 2D geometric interpretation of the dot product:

$$\hat{x}^T \hat{y} = \cos \phi$$

CC-SA 4.0, https://commons. wikimedia.org/wiki/File: Cauchy-Schwarz_inequation_ in_Euclidean_plane.gif

Cauchy-Schwartz ○○○○○●	Smart PCA 000000	Encoder-Decoder Sequence-to-Sequence Models	Attention 000000	Self-Attention	Summary 00

Cosine Distance

Large-magnitude vectors have a tendency to swamp the training criterion for a neural net. It's often useful to explicitly ignore the magnitude of the vector, and to only measure the angle between two vectors on the (N-1)-dimensional hypersphere. This is done using the **cosine distance**,

$$\begin{aligned} \cosh(\vec{x}, \vec{y}) &= 1 - \cos(\vec{x}, \vec{y}) \\ &= 1 - \hat{x}^T \hat{y} \end{aligned}$$

Cauchy-Schwarz_inequation_in_Euclidean_plane.gif

Cauchy-Schwartz 000000	Smart PCA ●○○○○○	Encoder-Decoder Sequence-to-Sequence Models	Attention 000000	Self-Attention	Summary 00
Outline					

1 The Cauchy-Schwartz Inequality and Cosine Distance

2 Smart PCA

3 Encoder-Decoder Sequence-to-Sequence Models

4 Attention

5 Intra-Attention (Self-Attention) vs. Inter-Attention

6 Summary

Cauchy-Schwartz 000000	Smart PCA ○●0000	Encoder-Decoder Sequence-to-Sequence Models	Attention 000000	Self-Attention	Summary 00
PCA and	Smart	PCA			

Consider trying to find a set of vectors, \vec{w}_k $(1 \le k \le K)$, in order to minimize

$$\mathsf{MSE} = E\left[\|\vec{x} - \sum_{k=1}^{K} \rho_k \vec{w}_k\|^2\right],$$

where expectation is over the training dataset. The minimum-MSE solution has orthogonal vectors, and therefore $\rho_k = \frac{\vec{w}_k^T \vec{x}}{\|\vec{w}_k\|^2}$ is the minimum-MSE weight.

- The MMSE solution can be computed using principal components analysis (PCA).
- The MMSE solution can also be computed using an autoencoder neural network. If *K* is much less than the vector dimension, the autoencoder computation is faster, so this is called "smart PCA" (SPCA).

Cauchy-Schwartz	Smart PCA	Encoder-Decoder Sequence-to-Sequence Models	Attention	Self-Attention	Summary
	000000				

Consider a training database, $\{\vec{x_1}, \ldots, \vec{x_n}\}$. An autoencoder computes

$$h_k^i = \vec{x}_i^T \vec{w}_k,$$

and

$$\vec{x}_i' = \sum_{k=1}^K h_k^i \vec{w}_k,$$

then trains \vec{w}_k to minimize

$$\mathsf{MSE} = \frac{1}{n} \sum_{i=1}^{n} \|\vec{x}_i - \vec{x}'_i\|^2$$

CC-SA 4.0,

Autoencoder_schema.png

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Cauchy-Schwartz	Smart PCA	Encoder-Decoder Sequence-to-Sequence Models	Attention	Self-Attention	Summary
	000000				

Both PCA and SPCA choose unit-length vectors, \vec{w}_k in order to minimize

$$\mathsf{MSE} = E\left[\|\vec{x} - \sum_{k=1}^{K} \rho_k \vec{w}_k\|^2\right],$$

therefore both SPCA and PCA choose vectors that span the same vector subspace. SPCA does not decide the order of the vectors, or their sign, so SPCA can produce a vector subspace that's a rotated version of the one chosen by PCA.

Plot of the first two Principal Components (left) and the two hidden units' values of a Linear Autoencoder (right) applied to the Fashion MNIST dataset. The two models being both linear learn to span the same subspace.

CC-SA 4.0,

https://upload.wikimedia.org/wikipedia/commons/

0/0b/PCA_vs_Linear_Autoencoder.png

(日本)(四本)(日本)(日本)(日本)

Cauchy-Schwartz Cauchy-Schwart

The training criterion for both PCA and SPCA is

$$MSE = E\left[\|\vec{x} - \sum_{k=1}^{K} \rho_k \vec{w}_k\|^2 \right], \quad \rho_k = \frac{\vec{w}_k^T \vec{x}}{\|\vec{w}_k\|^2}$$
$$= E\left[\|\vec{x}\|^2 - \sum_{k=1}^{K} \frac{(\vec{w}_k^T \vec{x})^2}{\|\vec{w}_k\|^2} \right]$$
$$= E\left[\|\vec{x}\|^2 \left(1 - \sum_{k=1}^{K} \left(\hat{w}_k^T \hat{x} \right)^2 \right) \right]$$
$$= E\left[\|\vec{x}\|^2 \left(1 - \sum_{k=1}^{K} \cos^2(\vec{w}_k, \vec{x}) \right) \right]$$

So the MSE minimizer is a set of vectors with approximately the minimum average squared cosine distance to the data.

・ロト・日本・日本・日本・日本・日本

Cauchy-Schwartz	Smart PCA	Encoder-Decoder Sequence-to-Sequence Models	Attention	Self-Attention	Summary
	00000				

- Since LeCun's 1991 paper, most image CNNs are basically autoencoders, in their lower layers. The filters at lower layers learn principal components that best match the local image patches.
- As suggested by this figure, the same convolution kernels can also be used to resynthesize the image, using an autoencoder training criterion.

(日) (四) (日) (日) (日)

Cauchy-Schwartz	Smart PCA 000000	Encoder-Decoder Sequence-to-Sequence Models ●○○○	Attention 000000	Self-Attention	Summary 00
Outling					

- The Cauchy-Schwartz Inequality and Cosine Distance
- 2 Smart PCA

นเทเต

- 3 Encoder-Decoder Sequence-to-Sequence Models
 - 4 Attention
- 5 Intra-Attention (Self-Attention) vs. Inter-Attention

6 Summary

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Cauchy-Schwartz 000000	Smart PCA 000000	Encoder-Decoder Sequence-to-Sequence Models	Attention 000000	Self-Attention	Summary 00
ASR and Difference	Machir es	ne Translation (MT): Si	milarit	ies and	

	Input, Output Lengths	Input, Output Sequence Order
ASR	Different	Same
MT	Different	Different

Cauchy-Schwartz Smart PCA 00000 Encoder Sequence-to-Sequence Models Attention 000000 Self-Attention 00000 Solf October Sequence-to-Sequence Models October Sequence-to-Sequenc

Encoder-Decoder Neural Nets

Cho et al., "Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation" (Sep. 2014) proposed a solution:

- RNN "encodes" all of the input to a summary vector, C, then
- RNN "decodes" C in order to produce the output.

Cho, Merriënboer, Gulcehre, Bahdenau, Bougares, Schwenk & Bengio, Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine

Cauchy-Schwartz	Smart PCA	Encoder-Decoder Sequence-to-Sequence Models	Attention	Self-Attention	Summary
000000	000000	○○○●	000000		00

Encoder-Decoder Neural Nets

Cho et al., "On the Properties of Neural Machine Translation: Encoder–Decoder Approaches" (Oct. 2014) proposed that the encoder summary didn't need to be a single vector, it could be a sequence of vectors.

Cauchy-Schwartz	Smart PCA 000000	Encoder-Decoder Sequence-to-Sequence Models	Attention •••••	Self-Attention	Summary 00
Outline					

- 1 The Cauchy-Schwartz Inequality and Cosine Distance
- 2 Smart PCA
- 3 Encoder-Decoder Sequence-to-Sequence Models
- 4 Attention
- 5 Intra-Attention (Self-Attention) vs. Inter-Attention

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

6 Summary

Encoder-Decoder: Too Much Information?

- Encoder-decoder models beat the state of the art in some tasks (usually tasks with a lot of data), but had a fatal flaw.
- If the encoder creates a small summary, then it accidentally throws away important information, because it doesn't always know which information is important.
- If the encoder creates a large summary, then the decoder doesn't know which data to use for any given computation, so training takes longer, and sometimes fails.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Cauchy-Schwartz 000000	Smart PCA 000000	Encoder-Decoder Sequence-to-Sequence Models	Attention 00●000	Self-Attention	Summary 00
A					

Attention

In December 2014, Chorowski et al. proposed a new type of encoder-decoder algorithm, based on "attention."

• The *i*th time step in the **Decoder** is computed based on an attention-weighted summary of the inputs:

$$s_i = \mathsf{Recurrency}\left(s_{i-1}, \sum_{j=1}^{L} \alpha_{i,j}h_j\right)$$

 The Attention is a kind of probability mass (sums to one) over the different input time steps, 1 ≤ j ≤ L:

$$\alpha_{i,j} = \frac{\exp(e_{i,j})}{\sum_{j=1}^{L} \exp(e_{i,j})}, \quad \sum_{j=1}^{L} \alpha_{i,j} = 1$$

• The **Attention Score** is a special neural net that measures the similarity between input vector h_i and output vector s_{i-1} :

$$e_{i,j} = \text{Score}(s_{i-1}, h_j)$$

Attention					
Cauchy-Schwartz 000000	Smart PCA 000000	Encoder-Decoder Sequence-to-Sequence Models	Attention 000000	Self-Attention	Summary 00

- s_{i-1} and h_j determine $\alpha_{i,j}$
- s_i is determined by $\sum_{j=1}^{L} \alpha_{i,j} h_j$

Chorowski, Bahdanau, Serdyk, Cho & Bengio, Attention-Based Models for

Speech Recognition, Fig. 1

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Cauchy-Schwartz Smart PCA Encoder-Decoder Sequence-to-Sequence Models Attention Self-Attention Summary

Segmentation: The CTC Viewpoint

In CTC, **time alignment** means finding input time points (t) where you can align each of the output labels (s).

Graves et al., 2006, Figure 1. (c) ICML

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

In attention-based models, **time alignment** means computing $\alpha_{i,j}$ as a function of *i* (vertical axis) and *j* (horizontal axis).

Chorowski et al., 2014, Figure 3.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Cauchy-Schwartz	Smart PCA	Encoder-Decoder Sequence-to-Sequence Models	Attention	Self-Attention	Summary
000000	000000		000000	●○○○○	00
Outline					

- The Cauchy-Schwartz Inequality and Cosine Distance
- 2 Smart PCA
- B Encoder-Decoder Sequence-to-Sequence Models
- 4 Attention
- 5 Intra-Attention (Self-Attention) vs. Inter-Attention

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

6 Summary

• The key idea of attention is that there is some sort of similarity score, $e_{i,j} = \text{Similarity}(s_{i-1}, h_j)$, so that you can compute attention weights according to

$$\alpha_{i,j} = \frac{\exp(e_{i,j})}{\sum_{j=1}^{L} \exp(e_{i,j})}$$

- Raw inputs (speech) and raw outputs (text) are not inherently similar.
- There needs to be a network that converts the inputs into some hidden vectors, h_j and s_{i-1}, that are similar if and only if α_{i,j} should be large.

Cauchy-SchwartzSmart PCA
000000Encoder-Decoder Sequence-to-Sequence ModelsAttention
000000Self-Attention
00Summary
00

Cheng, Dong and Lapata, "Long Short-Term Memory-Networks for Machine Reading," proposed using a new kind of attention called "intra-attention" or

"self-attention" to

compute

- *h_j* from the inputs, and
- s_{i-1} from the preceding outputs, so that
- inter-attention will correctly measure Similarity(s_{i-1}, h_j).

Cheng, Dong & Lapata, "Long Short-Term Memory-Networks for

Machine Reading," 2016, Fig. 3(a)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Intra-Att	ention				
Cauchy-Schwartz	Smart PCA	Encoder-Decoder Sequence-to-Sequence Models	Attention	Self-Attention	Summary
000000	000000		000000	○○○●○	00

An RNN with intra-attention computes the RNN state vector \tilde{h}_t as the attention-weighted summary of past RNN state vectors:

$$\check{h}_t = \sum_{i=1}^{t-1} \alpha_{t,i} h_i,$$

where the weights, $\alpha_{t,i}$, are softmax normalized:

$$\alpha_{t,i} = \operatorname{softmax}(a_{t,i}),$$

based on similarities computed between h_i , \tilde{h}_{t-1} , and the input vector x_t :

$$a_{t,i} = v^T \tanh\left(W_h h_i + W_x x_t + W_{\tilde{h}} \tilde{h}_{t-1}
ight)$$

Cauchy-Schwartz	Smart PCA	Encoder-Decoder Sequence-to-Sequence Models	Attention	Self-Attention	Summary
				0000	

- The representation of each word (in red) is computed based on...
- an attention-weighted summary of all previous words (attention weights in blue).
- Thus, the meaning of a word depends on its context.

The FBI is chasing a criminal on the run.						
The FBI is chasing a criminal on the run.						
The FBI is chasing a criminal on the run.						
The FBI	is chasing a criminal on the run.					
The FBI	is chasing a criminal on the run.					
The FBI	is chasing a criminal on the run.					
The FBI	is chasing a criminal on the run.					
The FBI	is chasing a criminal on the run.					
The FBI	is chasing a criminal on the run.					
The FBI	is chasing a criminal on the run.					

Cheng, Dong & Lapata, "Long Short-Term Memory-Networks for

Machine Reading," 2016, Fig. 1

イロト 不得 トイヨト イヨト

Cauchy-Schwartz 000000	Smart PCA 000000	Encoder-Decoder Sequence-to-Sequence Models 0000	Attention 000000	Self-Attention	Summary ●○
Outline					

- 1 The Cauchy-Schwartz Inequality and Cosine Distance
- 2 Smart PCA
- 3 Encoder-Decoder Sequence-to-Sequence Models
- 4 Attention
- 5 Intra-Attention (Self-Attention) vs. Inter-Attention

6 Summary

Cauchy-Schwartz 000000	Smart PCA 000000	Encoder-Decoder Sequence-to-Sequence Models	Attention 000000	Self-Attention	Summary ○●
Summary	,				

 PCA or smart PCA (autoencoder) learns a set of vectors with maximum cumulative similarity to the input:

$$\mathsf{MSE} = E\left[\|\vec{x}\|^2 \left(1 - \sum_{k=1}^K \cos^2\left(\vec{w}_k, \vec{x}\right) \right) \right]$$

- An encoder-decoder network can do something CTC can't: re-arrange the order.
- Attention:

$$s_{i} = \text{Recurrency}\left(s_{i-1}, \sum_{j=1}^{L} \alpha_{i,j}h_{j}\right)$$
$$\alpha_{i,j} = \frac{\exp(e_{i,j})}{\sum_{j=1}^{L} \exp(e_{i,j})}$$
$$e_{i,j} = \text{Similarity}(s_{i-1}, h_{j})$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで