Lecture 21: Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks, part 2

Mark Hasegawa-Johnson
All content CC-BY 4.0 unless otherwise specified.

ECE 537, Fall 2022
1 Review: CTC in Testing Mode

2 Maximum Likelihood Training of a CTC Network

3 Summary
Outline

1. Review: CTC in Testing Mode
2. Maximum Likelihood Training of a CTC Network
3. Summary
Temporal Classification Example: Speech

Temporal classification maps from a sequence of speech frames (top) to a sequence of phoneme or character labels (bottom).

Graves et al., 2006, Figure 1. (c) ICML
Variables in CTC

- **\(\mathbf{x} = [x_1, \ldots, x_T]\)** is the input. It is a sequence of vectors, \(x_t = [x_{1t}, \ldots, x_{mt}]\).

- **\(\mathbf{y} = [y_1, \ldots, y_T]\)** is the network output. It is a sequence of probability vectors, \(y_t = [y_{1u}, \ldots, y_{|L|+1}]\).

- **\(\pi = [\pi_1, \ldots, \pi_T]\)** is the path. It is a sequence of characters, \(y_k^t = p(\pi_t = k | \mathbf{x})\).

- **\(\mathbf{l} = [l_1, \ldots, l_U]\)** = \(B(\pi)\) is the label sequence, \(U \leq T\), which should be compared to the correct label sequence, \(\mathbf{z}\).
In order to express the CTC forward algorithm, we need to define a modified label sequence, l'. l' is equal to l with blanks inserted between every pair of letters. Thus if

$$l = [f, e, d],$$

then

$$l' = [-, f, -, e, -, d, -].$$

If the length of l is $|l|$, then the length of l' is $2|l| + 1$.
CTC Forward Algorithm: Partial Sequences

We also need to define the following partial sequences:

\[\mathbf{x}_{1:t} = [x_1, \ldots, x_t] \]
\[\pi_{1:t} = [\pi_1, \ldots, \pi_t] \]
\[l'_{1:s} = [l'_1, \ldots, l'_s] \]

\[
= \begin{cases}
 [-, l_1, -, l_2, \ldots, l_{s/2}] & s \text{ even} \\
 [-, l_1, -, l_2, \ldots, l_{(s-1)/2}, -] & s \text{ odd}
\end{cases}
\]
The CTC Forward Algorithm

Definition:

\[\alpha_t(I'_{1:s}) \equiv p(I'_{1:s} | x_{1:t}) \]
The CTC Forward Algorithm

1. Initialize:

\[\alpha_t([-]) = y^1_1 \]
\[\alpha_t([- , l_1]) = y^1_{l_1} \]

2. Iterate:

\[\alpha_t(l'_1:s) = \begin{cases}
(\alpha_{t-1}(l'_1:s) + \alpha_{t-1}(l'_1:s-1)) \times y_t^{l'_s} \\
\text{................. if } l'_s = - \text{ or } l'_s = l'_s-2 \\
(\alpha_{t-1}(l'_1:s) + \alpha_{t-1}(l'_1:s-1) + \alpha_{t-1}(l'_1:s-2)) \times y_t^{l'_s} \\
\text{................. otherwise}
\end{cases} \]

3. Terminate:

\[p(l_{1:U}|x) = \alpha_T(l'_1:2U) + \alpha_T(l'_1:2U+1) \]
The CTC Forward Algorithm

Graves et al., 2006, Fig. 3. (c) ICML
Outline

1. Review: CTC in Testing Mode

2. Maximum Likelihood Training of a CTC Network

3. Summary
The CTC Loss

The CTC loss function is the negative log probability of the correct label sequence given the waveform:

$$\mathcal{L}_{CTC} = - \ln p(z|x)$$

This is similar to cross entropy, but differentiating it is more complicated, since the correct label sequence is $z = [z_1, \ldots, z_U]$, while the speech sequence is $x = [x_1, \ldots, x_T]$.
We want to train the network to maximize the probability of the correct labeling, \(p(z|x) \).

The most computationally efficient way to calculate \(p(z|x) \) is the forward algorithm:

\[
p(z|x) = \alpha_T(z'_{1:2U}) + \alpha_T(z'_{1:2U+1}),
\]

... but that form is not easy to differentiate.

The expansion over all possible paths is not a computationally efficient way to calculate \(p(z|x) \), but it’s easier to differentiate:

\[
p(z|x) = \sum_{\pi \in B^{-1}(z)} p(\pi|x) = \sum_{\pi \in B^{-1}(z)} \prod_{t=1}^{T} y_{\pi_t}^{t}
\]
Differentiating the CTC Loss

Remember that the basic principle of back-propagation is the chain rule. If we want \(\frac{d\mathcal{L}}{dw} \), we can find it as

\[
\frac{d\mathcal{L}}{dw} = \sum_{\tau=1}^{T} \sum_{k=1}^{|L|+1} \left(\frac{d\mathcal{L}}{dy_{\tau}^{k}} \right) \left(\frac{\partial y_{\tau}^{k}}{\partial w} \right),
\]

- \(\frac{\partial y_{\tau}^{k}}{\partial w} \) is the same as for any other RNN, so it’s uninteresting.
- \(\frac{d\mathcal{L}}{dy_{\tau}^{k}} \) is unique to CTC. Let’s derive it.
Differentiating the CTC Loss

\[\mathcal{L}_{\text{CTC}} = - \ln p(z|x) = - \ln \left(\sum_{\pi \in B^{-1}(z)} \prod_{t=1}^{T} y_{\pi_t}^t \right) \]

Therefore

\[\frac{d \mathcal{L}}{dy_{k}^T} = \left(\frac{-1}{p(z|x)} \right) \left(\frac{dp(z|x)}{dy_{k}^T} \right) = \left(\frac{-1}{p(z|x)} \right) \left(\frac{1}{y_{k}^T} \right) \left(\sum_{\pi \in B^{-1}(z), \pi_T = k} \prod_{t=1}^{T} y_{\pi_t}^t \right) \]

- The sum in the last line is over all paths that are valid expansions of the correct transcription, and for which \(\pi_T = k \).
- The \(\frac{1}{y_{k}^T} \) comes from the derivative of the product:

\[\frac{d}{dy} xyz = xz = \frac{1}{y} xyz \]
Differentiating the CTC Loss

\[
\frac{dL}{dy^T_k} = \left(\frac{-1}{p(z|x)} \right) \left(\frac{1}{y^T_k} \sum_{\pi \in B^{-1}(z), \pi_\tau = k} \prod_{t=1}^{T} y^{t}_{\pi_t} \right)
\]

The sum in the last line is over all paths that are valid expansions of the correct transcription, and for which \(\pi_\tau = k \). This has a nice Bayesian interpretation:

\[
\frac{dL}{dy^T_k} = \left(\frac{-1}{p(z|x)} \right) \left(\frac{1}{y^T_k} p(z, \pi_\tau = k | x) \right)
\]

\[
= \frac{-1}{y^T_k} p(\pi_\tau = k | z, x)
\]
The CTC Gamma Probability

Just as for any other HMM, let’s define a gamma probability, $\gamma_\tau(k) = p(\pi_\tau = k | z, x)$. Then

$$\frac{dL}{dy^\tau_k} = -\frac{\gamma_\tau(k)}{y^\tau_k},$$

where

$$\gamma_\tau(k) = p(\pi_\tau = k | z, x) = \frac{1}{y^\tau_k} \alpha_\tau(z'_1:s) \beta_\tau(z'_{s:(2U+1)}) \quad (1)$$

- $\beta_t(z'_{s:2U+1}) = p(z'_{s:(2U+1)} | x_t:T)$

Notice that $\alpha_\tau(z'_{1:s})$ and $\beta_\tau(z'_{s:(2U+1)})$ both include the fact that the network is producing $z'_s = k$ at time τ. To compensate for that duplication, Eq. (1) has a $\frac{1}{y^\tau_k}$ factor.
The CTC Forward-Backward Algorithm

$$\alpha_t(z'_{1:s})$$ is the probability of the best path up to (and including) state $$z'_s$$ at time $$t$$. $$\beta_t(z'_{s:(2U+1)})$$ is the probability of the best path starting from state $$z'_s$$ at time $$t$$.

Graves et al., 2006, Fig. 3. (c) ICML
At the start of training (a), $y_k^t = 0$ for all k except the blank symbol. $\gamma_t(k)$, is determined mostly by the known sequence of the correct labels, z.

After some training (b), y_k^t has started to converge. Its convergence guides the forward-backward algorithm, so $\gamma_t(k)$ is also much more localized.

When fully converged, $y_k^t \approx \gamma_t(k)$, so the error is nearly zero.
Outline

1. Review: CTC in Testing Mode
2. Maximum Likelihood Training of a CTC Network
3. Summary
Conclusions

- A CTC network is trained to minimize

\[\mathcal{L}_{\text{CTC}} = -\ln p(z|x) \]

- Differentiating, we discover that

\[\frac{d\mathcal{L}}{dy_k^\tau} = \frac{1}{y_k^\tau} p(\pi_\tau = k|z, x) \]

- \(p(\pi_\tau = k|z, x) \) can be computed using the forward-backward algorithm.

- Even in the very first epoch of training, the known sequence \(z \) distributes error uniformly across the waveform. For this reason, CTC training converges smoothly and quickly (compared, e.g., to Transformer loss).