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Temporal Classification

x = [x1, . . . , xT ] is the input. Each xt is usually a vector,
xt = [x t1, . . . , x

t
m].

z = [z1, . . . , zU ] is the desired network output, where zu ∈ L
comes from some alphabet L. U ≤ T .

The goal is to train a function h(x) so that y = h(x) is similar
to z.
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Temporal Classification Example: Speech

Temporal classification maps from a sequence of speech frames (top) to a sequence of phoneme or character labels
(bottom).

Graves et al., 2006, Figure 1. (c) ICML
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Network Outputs

An RNN outputs a sequence of vectors, y = [y1, . . . , yT ],
where each yt = [y t1 , . . . , y

t
|L|] is a pmf:

y tk ≥ 0,

|L|∑
k=1

y tk = 1

Thus, if z is time-aligned, we can interpret

y tk = P(zt = k|x)
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Recurrent Neural Net (RNN)

Image CC-SA-4.0 by Ixnay,

https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg

https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg
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Recurrent Neural Net (RNN)

A recurrent neural net defines nonlinear recurrence of a hidden
vector, ht :

ht = σ (Uxt + Vht−1)

yt = softmax (Wht)

The weight matrices, U, V , and W , are chosen to minimize the
loss function. For example, suppose we’re using a cross-entropy
loss with target sequence z, then

L = −
T∑
t=1

ln y tzt
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Partial vs. Full Derivatives

With one-step recurrence, as shown here, L depends on ht in
exactly two different ways:

dL
dht

=
dL
dyt

∂yt
∂ht

+
dL

dht+1

∂ht+1

∂ht



Temporal Classification Recurrent Neural Networks From Network Outputs to Labellings The CTC Forward Algorithm Conclusions

Partial vs. Full Derivatives

dL
dht

=
dL
dyt

∂yt
∂ht

+
dL

dht+1

∂ht+1

∂ht

where
dL
dht

is the total derivative, and includes all of the different
ways in which L depends on ht .
∂ht+1

∂ht
is the partial derivative, i.e., the change in ht+1 per unit

change in ht if xt is held constant.
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x0 . . . xt xt+1 . . . xT

h0
. . . ht ht+1 . . . hT

y0 . . . yt yt+1 . . . yT L

Here’s a flow diagram that could represent:

ht = σ (Uxt + Vht−1) , yt = softmax(Wht),

L = −
T∑
t=0

ln y tzt
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x0 . . . xt xt+1 . . . xT

h0
. . . ht ht+1 . . . hT

y0 . . . yt yt+1 . . . yT L

Back-propagation through time does this:

dL
dht

=
dL
dyt

∂yt
∂ht

+
dL

dht+1

∂ht+1

∂ht
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Partial vs. Full Derivatives

So for example, if

L = −
T∑
t=0

ln y tzt

then the partial derivative of L w.r.t. htk is

∂L
∂htk

= − 1

y tzt

∂y tzt
∂htk

and the total derivative of L w.r.t. htk is

dL
dhtk

= − 1

y tzt

∂y tzt
∂htk

+
∑
i

dL
dht+1

i

∂ht+1
i

∂htk
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Synchronous Backprop vs. BPTT

The basic idea of back-prop-through-time is divide-and-conquer.

1 Synchronous Backprop: First, calculate the partial
derivative of L w.r.t. htk , assuming that all other time steps
are held constant.

∂L
∂htk

= − 1

y tzt

∂y tzt
∂htk

2 Back-prop through time: Second, iterate backward through
time to calculate the total derivative

dL
dhtk

= − 1

y tzt

∂y tzt
∂htk

+
∑
i

dL
dht+1

i

∂ht+1
i

∂htk
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Time Alignment

In the previous slides, notice we’ve assumed that the correct
labeling, z, is time-aligned to the speech waveform, i.e.,
z = [z1, . . . , zT ].

That’s rarely true! Usually we know the correct phones or
characters, z = [z1, . . . , zU ], but not their time alignment, i.e.,
U ≤ T .

The old solution (pre-CTC):

Train a mixture Gaussian HMM.
Use the Viterbi algorithm to time-align z to x.
Use the time-aligned z to train the RNN.

CTC was proposed as a better way.
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Many-to-One Mapping

The key idea of CTC is that, since U ≤ T , the mapping from y to
z is many-to-one. For example, consider an utterance with a
5-frame speech file, and a 3-character output. We can map from 5
frames to 3 characters by just eliminating sequential duplicates,
like this:

z = [f, e, d]By = [f, f, e, d, d]

z = [f, e, d]By = [f, e, e, e, d]

z = [f, e, d]By = [f, f, e, e, d]

But notice the problem: there is no way to generate the output
z = [f, e, e, d]! By eliminating duplicates, it becomes impossible to
generate a sentence with repeated letters.
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The Blank Character

CTC makes repeated letters possible by using a blank character, –.
The many-to-one mapping now has two steps: (1) eliminate all
duplicate characters, (2) THEN eliminate all blanks.

z = [f, e, d]By = [f, –, e, e, d]

z = [f, e, e, d]By = [f, e, –, e, d]

z = [f, f, e, d]By = [f, –, f, e, d]



Temporal Classification Recurrent Neural Networks From Network Outputs to Labellings The CTC Forward Algorithm Conclusions

Probability of Labels Given Speech

With these definitions, the probability of z given x is:

p(z|x) =
∑

π∈B−1(z)

p(π|x),

π = [π1, . . . , πT ] is a time-aligned label sequence called a
“path.” Each path element is a label or a blank: πt ∈ L∪ {–}.

p(π|x) =
T∏
t=1

y tπt

B−1(z) is the set of all paths that match the label sequence z.
For example,

B−1 ([f, e, d]) =


[f, e, e, e, d]
[f, –, e, –, d]
[f, f, –, e, d]

...


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Temporal Classification

The temporal classification problem is now just:

h(x) = argmax
l∈L≤T

p(l|x)

= argmax
l∈L≤T

∑
π∈B−1(l)

p(π|x)

= argmax
l∈L≤T

∑
π∈B−1(l)

T∏
t=1

y tπt

l = [l1, . . . , lV ] is a label sequence of any length V ≤ T where
lv ∈ L.

π = [π1, . . . , πT ] is a path of length T where πt ∈ L ∪ {–}.
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Finding the Best Label Sequence

The problem now is: how can we search the entire set
π ∈ B−1(l), for every possible label sequence?

Answer: the forward algorithm!
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CTC Forward Algorithm: The Modified Label Sequence

In order to express the CTC forward algorithm, we need to define a
modified label sequence, l′. l′ is equal to l with blanks inserted
between every pair of letters. Thus if

l = [f, e, d],

then
l′ = [–, f, –, e, –, d, –].

If the length of l is |l|, then the length of l′ is 2|l|+ 1.



Temporal Classification Recurrent Neural Networks From Network Outputs to Labellings The CTC Forward Algorithm Conclusions

CTC Forward Algorithm: Partial Sequences

We also need to define the following partial sequences:

x1:t = [x1, . . . , xt ]

π1:t = [π1, . . . , πt ]

l′1:s = [l ′1, . . . , l
′
s ]

=

{ [
–, l1, –, l2, . . . , ls/2

]
s even[

–, l1, –, l2, . . . , l(s−1)/2, –
]

s odd
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The CTC Forward Algorithm

Definition: αt(l′1:s) ≡ p(l′1:s |x1:t). Computation:

1 Initialize:

α1([–]) = y1
–

α1([–, l1]) = y1
l1

The neural network can either start out by generating a blank, in
which case l′ = [–], or it can start out by generating a real
character l1, in which case l′ = [–, l1].
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The CTC Forward Algorithm

1 Initialize:

α1([–]) = y1
–

α1([–, l1]) = y1
l1

2 Iterate:

αt(l
′
1:s) =


(αt−1(l′1:s) + αt−1(l′1:s−1))× y tl ′s
. . . . . . . . . . . . if l ′s = – or l ′s = l ′s−2

(αt−1(l′1:s) + αt−1(l′1:s−1) + αt−1(l′1:s−2))× y tl ′s
. . . . . . . . . . . . otherwise

Repeating the same character (αt−1(l′1:s)) or adding one more
character (αt−1(l′1:s−1)) are always possible. Adding two more
characters (αt−1(l′1:s−2)) is OK if the current character is not a
blank or a repeat.
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The CTC Forward Algorithm

Graves et al., 2006, Fig. 3. (c) ICML

Repeating the same character (αt−1(l′1:s)) or adding one more
character (αt−1(l′1:s−1)) are always possible. Adding two more

characters (αt−1(l′1:s−2)) is OK if the current character is not a
blank or a repeat.



Temporal Classification Recurrent Neural Networks From Network Outputs to Labellings The CTC Forward Algorithm Conclusions

The CTC Forward Algorithm

1 Initialize:

α1([–]) = y1
–

α1([–, l1]) = y1
l1

2 Iterate:

αt(l
′
1:s) =


(αt−1(l′1:s) + αt−1(l′1:s−1))× y tl ′s
. . . . . . . . . . . . if l ′s = – or l ′s = l ′s−2

(αt−1(l′1:s) + αt−1(l′1:s−1) + αt−1(l′1:s−2))× y tl ′s
. . . . . . . . . . . . otherwise

3 Terminate:

p(l1:U |x) = αT (l′1:2U) + αT (l′1:2U+1)
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The CTC Forward Algorithm

p(l1:U |x1:T ) = αT (l′1:2U) + αT (l′1:2U+1)
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Computational Issues

In the HMM, αt(q) only depended on the final state. In CTC,
αt(l′1:s) depends on the entire label sequence up to position
s. The complexity of this search is exponential in s. To make
it computationally tractable, use a beam search:

Discard all but the best N candidates for each t.
Compute all possible extensions to time t + 1.
Repeat

As in the HMM, αt(l1:s) becomes very small, so Graves et
al. recommend using a scaled forward algorithm.



Temporal Classification Recurrent Neural Networks From Network Outputs to Labellings The CTC Forward Algorithm Conclusions

Computational Issues #1: Beam Search

αt(l′1:s) depends on the
entire label sequence up to
position s. The complexity
of this search is exponential
in s (shown).

To make it computationally
tractable, use a beam search
(not shown).

Graves et al., 2006, Fig. 2. (c) ICML
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Connectionist Temporal Classification

An RNN computes the probability of a label sequence, z,
given an input sequence x.

The key idea of CTC is a many-to-one mapping from paths to
label sequences. The recognition probability is then

p(z|x) =
∑

π∈B−1(z)

p(π|x),

The CTC forward algorithm is just like the HMM forward
algorithm, except that, instead of αt(q), we compute

αt(l
′
1:s) ≡ p(l′1:s |x1:t)
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