
Temporal Classification Recurrent Neural Networks From Network Outputs to Labellings The CTC Forward Algorithm Conclusions

Lecture 20: Connectionist Temporal
Classification: Labelling Unsegmented Sequence

Data with Recurrent Neural Networks

Mark Hasegawa-Johnson
All content CC-BY 4.0 unless otherwise specified.

ECE 537, Fall 2022

https://creativecommons.org/licenses/by/4.0/

Temporal Classification Recurrent Neural Networks From Network Outputs to Labellings The CTC Forward Algorithm Conclusions

1 Temporal Classification

2 Recurrent Neural Networks

3 From Network Outputs to Labellings

4 The CTC Forward Algorithm

5 Conclusions

Temporal Classification Recurrent Neural Networks From Network Outputs to Labellings The CTC Forward Algorithm Conclusions

Outline

1 Temporal Classification

2 Recurrent Neural Networks

3 From Network Outputs to Labellings

4 The CTC Forward Algorithm

5 Conclusions

Temporal Classification Recurrent Neural Networks From Network Outputs to Labellings The CTC Forward Algorithm Conclusions

Temporal Classification

x = [x1, . . . , xT] is the input. Each xt is usually a vector,
xt = [x t1, . . . , x

t
m].

z = [z1, . . . , zU] is the desired network output, where zu ∈ L
comes from some alphabet L. U ≤ T .

The goal is to train a function h(x) so that y = h(x) is similar
to z.

Temporal Classification Recurrent Neural Networks From Network Outputs to Labellings The CTC Forward Algorithm Conclusions

Temporal Classification Example: Speech

Temporal classification maps from a sequence of speech frames (top) to a sequence of phoneme or character labels
(bottom).

Graves et al., 2006, Figure 1. (c) ICML

Temporal Classification Recurrent Neural Networks From Network Outputs to Labellings The CTC Forward Algorithm Conclusions

Network Outputs

An RNN outputs a sequence of vectors, y = [y1, . . . , yT],
where each yt = [y t1 , . . . , y

t
|L|] is a pmf:

y tk ≥ 0,

|L|∑
k=1

y tk = 1

Thus, if z is time-aligned, we can interpret

y tk = P(zt = k|x)

Temporal Classification Recurrent Neural Networks From Network Outputs to Labellings The CTC Forward Algorithm Conclusions

Outline

1 Temporal Classification

2 Recurrent Neural Networks

3 From Network Outputs to Labellings

4 The CTC Forward Algorithm

5 Conclusions

Temporal Classification Recurrent Neural Networks From Network Outputs to Labellings The CTC Forward Algorithm Conclusions

Recurrent Neural Net (RNN)

Image CC-SA-4.0 by Ixnay,

https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg

https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg

Temporal Classification Recurrent Neural Networks From Network Outputs to Labellings The CTC Forward Algorithm Conclusions

Recurrent Neural Net (RNN)

A recurrent neural net defines nonlinear recurrence of a hidden
vector, ht :

ht = σ (Uxt + Vht−1)

yt = softmax (Wht)

The weight matrices, U, V , and W , are chosen to minimize the
loss function. For example, suppose we’re using a cross-entropy
loss with target sequence z, then

L = −
T∑
t=1

ln y tzt

Temporal Classification Recurrent Neural Networks From Network Outputs to Labellings The CTC Forward Algorithm Conclusions

Partial vs. Full Derivatives

With one-step recurrence, as shown here, L depends on ht in
exactly two different ways:

dL
dht

=
dL
dyt

∂yt
∂ht

+
dL

dht+1

∂ht+1

∂ht

Temporal Classification Recurrent Neural Networks From Network Outputs to Labellings The CTC Forward Algorithm Conclusions

Partial vs. Full Derivatives

dL
dht

=
dL
dyt

∂yt
∂ht

+
dL

dht+1

∂ht+1

∂ht

where
dL
dht

is the total derivative, and includes all of the different
ways in which L depends on ht .
∂ht+1

∂ht
is the partial derivative, i.e., the change in ht+1 per unit

change in ht if xt is held constant.

Temporal Classification Recurrent Neural Networks From Network Outputs to Labellings The CTC Forward Algorithm Conclusions

x0 . . . xt xt+1 . . . xT

h0
. . . ht ht+1 . . . hT

y0 . . . yt yt+1 . . . yT L

Here’s a flow diagram that could represent:

ht = σ (Uxt + Vht−1) , yt = softmax(Wht),

L = −
T∑
t=0

ln y tzt

Temporal Classification Recurrent Neural Networks From Network Outputs to Labellings The CTC Forward Algorithm Conclusions

x0 . . . xt xt+1 . . . xT

h0
. . . ht ht+1 . . . hT

y0 . . . yt yt+1 . . . yT L

Back-propagation through time does this:

dL
dht

=
dL
dyt

∂yt
∂ht

+
dL

dht+1

∂ht+1

∂ht

Temporal Classification Recurrent Neural Networks From Network Outputs to Labellings The CTC Forward Algorithm Conclusions

Partial vs. Full Derivatives

So for example, if

L = −
T∑
t=0

ln y tzt

then the partial derivative of L w.r.t. htk is

∂L
∂htk

= − 1

y tzt

∂y tzt
∂htk

and the total derivative of L w.r.t. htk is

dL
dhtk

= − 1

y tzt

∂y tzt
∂htk

+
∑
i

dL
dht+1

i

∂ht+1
i

∂htk

Temporal Classification Recurrent Neural Networks From Network Outputs to Labellings The CTC Forward Algorithm Conclusions

Synchronous Backprop vs. BPTT

The basic idea of back-prop-through-time is divide-and-conquer.

1 Synchronous Backprop: First, calculate the partial
derivative of L w.r.t. htk , assuming that all other time steps
are held constant.

∂L
∂htk

= − 1

y tzt

∂y tzt
∂htk

2 Back-prop through time: Second, iterate backward through
time to calculate the total derivative

dL
dhtk

= − 1

y tzt

∂y tzt
∂htk

+
∑
i

dL
dht+1

i

∂ht+1
i

∂htk

Temporal Classification Recurrent Neural Networks From Network Outputs to Labellings The CTC Forward Algorithm Conclusions

Time Alignment

In the previous slides, notice we’ve assumed that the correct
labeling, z, is time-aligned to the speech waveform, i.e.,
z = [z1, . . . , zT].

That’s rarely true! Usually we know the correct phones or
characters, z = [z1, . . . , zU], but not their time alignment, i.e.,
U ≤ T .

The old solution (pre-CTC):

Train a mixture Gaussian HMM.
Use the Viterbi algorithm to time-align z to x.
Use the time-aligned z to train the RNN.

CTC was proposed as a better way.

Temporal Classification Recurrent Neural Networks From Network Outputs to Labellings The CTC Forward Algorithm Conclusions

Outline

1 Temporal Classification

2 Recurrent Neural Networks

3 From Network Outputs to Labellings

4 The CTC Forward Algorithm

5 Conclusions

Temporal Classification Recurrent Neural Networks From Network Outputs to Labellings The CTC Forward Algorithm Conclusions

Many-to-One Mapping

The key idea of CTC is that, since U ≤ T , the mapping from y to
z is many-to-one. For example, consider an utterance with a
5-frame speech file, and a 3-character output. We can map from 5
frames to 3 characters by just eliminating sequential duplicates,
like this:

z = [f, e, d]By = [f, f, e, d, d]

z = [f, e, d]By = [f, e, e, e, d]

z = [f, e, d]By = [f, f, e, e, d]

But notice the problem: there is no way to generate the output
z = [f, e, e, d]! By eliminating duplicates, it becomes impossible to
generate a sentence with repeated letters.

Temporal Classification Recurrent Neural Networks From Network Outputs to Labellings The CTC Forward Algorithm Conclusions

The Blank Character

CTC makes repeated letters possible by using a blank character, –.
The many-to-one mapping now has two steps: (1) eliminate all
duplicate characters, (2) THEN eliminate all blanks.

z = [f, e, d]By = [f, –, e, e, d]

z = [f, e, e, d]By = [f, e, –, e, d]

z = [f, f, e, d]By = [f, –, f, e, d]

Temporal Classification Recurrent Neural Networks From Network Outputs to Labellings The CTC Forward Algorithm Conclusions

Probability of Labels Given Speech

With these definitions, the probability of z given x is:

p(z|x) =
∑

π∈B−1(z)

p(π|x),

π = [π1, . . . , πT] is a time-aligned label sequence called a
“path.” Each path element is a label or a blank: πt ∈ L∪ {–}.

p(π|x) =
T∏
t=1

y tπt

B−1(z) is the set of all paths that match the label sequence z.
For example,

B−1 ([f, e, d]) =


[f, e, e, e, d]
[f, –, e, –, d]
[f, f, –, e, d]

...



Temporal Classification Recurrent Neural Networks From Network Outputs to Labellings The CTC Forward Algorithm Conclusions

Temporal Classification

The temporal classification problem is now just:

h(x) = argmax
l∈L≤T

p(l|x)

= argmax
l∈L≤T

∑
π∈B−1(l)

p(π|x)

= argmax
l∈L≤T

∑
π∈B−1(l)

T∏
t=1

y tπt

l = [l1, . . . , lV] is a label sequence of any length V ≤ T where
lv ∈ L.

π = [π1, . . . , πT] is a path of length T where πt ∈ L ∪ {–}.

Temporal Classification Recurrent Neural Networks From Network Outputs to Labellings The CTC Forward Algorithm Conclusions

Outline

1 Temporal Classification

2 Recurrent Neural Networks

3 From Network Outputs to Labellings

4 The CTC Forward Algorithm

5 Conclusions

Temporal Classification Recurrent Neural Networks From Network Outputs to Labellings The CTC Forward Algorithm Conclusions

Finding the Best Label Sequence

The problem now is: how can we search the entire set
π ∈ B−1(l), for every possible label sequence?

Answer: the forward algorithm!

Temporal Classification Recurrent Neural Networks From Network Outputs to Labellings The CTC Forward Algorithm Conclusions

CTC Forward Algorithm: The Modified Label Sequence

In order to express the CTC forward algorithm, we need to define a
modified label sequence, l′. l′ is equal to l with blanks inserted
between every pair of letters. Thus if

l = [f, e, d],

then
l′ = [–, f, –, e, –, d, –].

If the length of l is |l|, then the length of l′ is 2|l|+ 1.

Temporal Classification Recurrent Neural Networks From Network Outputs to Labellings The CTC Forward Algorithm Conclusions

CTC Forward Algorithm: Partial Sequences

We also need to define the following partial sequences:

x1:t = [x1, . . . , xt]

π1:t = [π1, . . . , πt]

l′1:s = [l ′1, . . . , l
′
s]

=

{ [
–, l1, –, l2, . . . , ls/2

]
s even[

–, l1, –, l2, . . . , l(s−1)/2, –
]

s odd

Temporal Classification Recurrent Neural Networks From Network Outputs to Labellings The CTC Forward Algorithm Conclusions

The CTC Forward Algorithm

Definition: αt(l′1:s) ≡ p(l′1:s |x1:t). Computation:

1 Initialize:

α1([–]) = y1
–

α1([–, l1]) = y1
l1

The neural network can either start out by generating a blank, in
which case l′ = [–], or it can start out by generating a real
character l1, in which case l′ = [–, l1].

Temporal Classification Recurrent Neural Networks From Network Outputs to Labellings The CTC Forward Algorithm Conclusions

The CTC Forward Algorithm

1 Initialize:

α1([–]) = y1
–

α1([–, l1]) = y1
l1

2 Iterate:

αt(l
′
1:s) =


(αt−1(l′1:s) + αt−1(l′1:s−1))× y tl ′s
. if l ′s = – or l ′s = l ′s−2

(αt−1(l′1:s) + αt−1(l′1:s−1) + αt−1(l′1:s−2))× y tl ′s
. otherwise

Repeating the same character (αt−1(l′1:s)) or adding one more
character (αt−1(l′1:s−1)) are always possible. Adding two more
characters (αt−1(l′1:s−2)) is OK if the current character is not a
blank or a repeat.

Temporal Classification Recurrent Neural Networks From Network Outputs to Labellings The CTC Forward Algorithm Conclusions

The CTC Forward Algorithm

Graves et al., 2006, Fig. 3. (c) ICML

Repeating the same character (αt−1(l′1:s)) or adding one more
character (αt−1(l′1:s−1)) are always possible. Adding two more

characters (αt−1(l′1:s−2)) is OK if the current character is not a
blank or a repeat.

Temporal Classification Recurrent Neural Networks From Network Outputs to Labellings The CTC Forward Algorithm Conclusions

The CTC Forward Algorithm

1 Initialize:

α1([–]) = y1
–

α1([–, l1]) = y1
l1

2 Iterate:

αt(l
′
1:s) =


(αt−1(l′1:s) + αt−1(l′1:s−1))× y tl ′s
. if l ′s = – or l ′s = l ′s−2

(αt−1(l′1:s) + αt−1(l′1:s−1) + αt−1(l′1:s−2))× y tl ′s
. otherwise

3 Terminate:

p(l1:U |x) = αT (l′1:2U) + αT (l′1:2U+1)

Temporal Classification Recurrent Neural Networks From Network Outputs to Labellings The CTC Forward Algorithm Conclusions

The CTC Forward Algorithm

p(l1:U |x1:T) = αT (l′1:2U) + αT (l′1:2U+1)

Temporal Classification Recurrent Neural Networks From Network Outputs to Labellings The CTC Forward Algorithm Conclusions

Computational Issues

In the HMM, αt(q) only depended on the final state. In CTC,
αt(l′1:s) depends on the entire label sequence up to position
s. The complexity of this search is exponential in s. To make
it computationally tractable, use a beam search:

Discard all but the best N candidates for each t.
Compute all possible extensions to time t + 1.
Repeat

As in the HMM, αt(l1:s) becomes very small, so Graves et
al. recommend using a scaled forward algorithm.

Temporal Classification Recurrent Neural Networks From Network Outputs to Labellings The CTC Forward Algorithm Conclusions

Computational Issues #1: Beam Search

αt(l′1:s) depends on the
entire label sequence up to
position s. The complexity
of this search is exponential
in s (shown).

To make it computationally
tractable, use a beam search
(not shown).

Graves et al., 2006, Fig. 2. (c) ICML

Temporal Classification Recurrent Neural Networks From Network Outputs to Labellings The CTC Forward Algorithm Conclusions

Outline

1 Temporal Classification

2 Recurrent Neural Networks

3 From Network Outputs to Labellings

4 The CTC Forward Algorithm

5 Conclusions

Temporal Classification Recurrent Neural Networks From Network Outputs to Labellings The CTC Forward Algorithm Conclusions

Connectionist Temporal Classification

An RNN computes the probability of a label sequence, z,
given an input sequence x.

The key idea of CTC is a many-to-one mapping from paths to
label sequences. The recognition probability is then

p(z|x) =
∑

π∈B−1(z)

p(π|x),

The CTC forward algorithm is just like the HMM forward
algorithm, except that, instead of αt(q), we compute

αt(l
′
1:s) ≡ p(l′1:s |x1:t)

	Temporal Classification
	Recurrent Neural Networks
	From Network Outputs to Labellings
	The CTC Forward Algorithm
	Conclusions

