Lecture 20: Connectionist Temporal
Classification: Labelling Unsegmented Sequence
Data with Recurrent Neural Networks

Mark Hasegawa-Johnson
All content CC-BY 4.0 unless otherwise specified.

ECE 537, Fall 2022

https://creativecommons.org/licenses/by/4.0/

@ Temporal Classification

© Recurrent Neural Networks

© From Network Outputs to Labellings
@ The CTC Forward Algorithm

© Conclusions

Temporal Classification
°

Outline

@ Temporal Classification

Temporal Classification
®00

Temporal Classification

@ X = [x1,...,x7] is the input. Each x; is usually a vector,
x¢ = [xf, ..., x5]
@ z=[z,...,zy| is the desired network output, where z, € L

comes from some alphabet L. U < T.

@ The goal is to train a function h(x) so that y = h(x) is similar
to z.

Temporal Classification
oeo

Temporal Classification Example: Speech

Fo L EZ N S e N
= J\ / J _ / Framewise
£0 =
©
<]
—
.
gl[‘-. B Y it A ,
N crC
=0 A
dh ax s aw n god ix v
Ylthe" HsoundH - Hofﬂ

Temporal classification maps from a sequence of speech frames (top) to a sequence of phoneme or character labels
(bottom).

Graves et al., 2006, Figure 1. (c) ICML

Temporal Classification
ooe

Network Outputs

@ An RNN outputs a sequence of vectors, y = [y1,...,y7],
where each y; = [y{,... ,yﬁl] is a pmf:

L]
ye>0, > yi=1
k=1
@ Thus, if z is time-aligned, we can interpret

Yk = P(zt = K|x)

Recurrent Neural Networks
°

Outline

© Recurrent Neural Networks

Recurrent Neural Networks
©00000000

Recurrent Neural Net (RNN)

Unfold

<

Image CC-SA-4.0 by Ixnay,

https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg

https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg

Recurrent Neural Networks
0®0000000

Recurrent Neural Net (RNN)

A recurrent neural net defines nonlinear recurrence of a hidden
vector, hy:

ht = O'(UXj_— + Vhtf]_)
yt = softmax (Wh;)

The weight matrices, U, V, and W, are chosen to minimize the
loss function. For example, suppose we're using a cross-entropy
loss with target sequence z, then

-
L= —Zlnyztt
t=1

Recurrent Neural Networks
00®000000

Partial vs. Full Derivatives

Unfold

@

fw !
V =) . + B~ IR~ B~

@

=)
-®
+@
-®

fu fu tu

®@ ®

With one-step recurrence, as shown here, £ depends on h; in
exactly two different ways:

dL_dLoy | dL Ohen
dht - d_yt (9ht dht+1 8ht

Recurrent Neural Networks
[ele]eY Yololelele)

Partial vs. Full Derivatives

dL_dLoy | dL Ohen
dht - dyt 8ht dht+1 8/71-

where

° g—,ﬁ is the total derivative, and includes all of the different
ways in which £ depends on h;.
85—;# is the partial derivative, i.e., the change in hyy1 per unit

change in h; if x; is held constant.

Recurrent Neural Networks
[eleleleY Tolelele)

00
OO -

Here's a flow diagram that could represent:

@
-
®

ht =0 (UXt + Vht_]_), Yt = SOftmaX(Wht),

T
=D _Iny,
t=0

Recurrent Neural Networks

00000e000

Back-propagation through time does this:

L dLoy | dL D
dht N d_yt aht dht+1 8ht

Recurrent Neural Networks
000000®00

Partial vs. Full Derivatives

So for example, if
T
L=— Z In yztt
t=0

then the partial derivative of £ w.r.t. h} is

oL _ 10y
oh, N yi oh,

and the total derivative of £ w.r.t. hj is

dc 1 Oyt > di Ohttt

dht ~ " yi oht dht™1 Oh}

i

Recurrent Neural Networks
000000080

Synchronous Backprop vs. BPTT

The basic idea of back-prop-through-time is divide-and-conquer.

@ Synchronous Backprop: First, calculate the partial
derivative of £ w.r.t. h}, assuming that all other time steps
are held constant.

oL 19 Vi

37h,i B th oh,

@ Back-prop through time: Second, iterate backward through
time to calculate the total derivative

dc 1 9y}, 3 dC ottt
d

dht ~ " yL oht he1 oht

Recurrent Neural Networks
00000000e

Time Alignment

@ In the previous slides, notice we've assumed that the correct
labeling, z, is time-aligned to the speech waveform, i.e.,

zZ= [Zl,... ,ZT].

@ That's rarely true! Usually we know the correct phones or
characters, z = [z1, ..., zy], but not their time alignment, i.e.,
ULT.

@ The old solution (pre-CTC):

e Train a mixture Gaussian HMM.
o Use the Viterbi algorithm to time-align z to x.
o Use the time-aligned z to train the RNN.

@ CTC was proposed as a better way.

From Network Outputs to Labellings
°

Outline

© From Network Outputs to Labellings

From Network Outputs to Labellings
®000

Many-to-One Mapping

The key idea of CTC is that, since U < T, the mapping from y to
z is many-to-one. For example, consider an utterance with a
5-frame speech file, and a 3-character output. We can map from 5
frames to 3 characters by just eliminating sequential duplicates,

like this:

y = [f,f,e,d,d] o B o z = [f,e,d]
y = [f,e,e,e,d] o B o z = [f,e,d]
y =[f,f,e,e,d] o B o z = [f,e,d]

But notice the problem: there is no way to generate the output
z = [f,e,e,d]! By eliminating duplicates, it becomes impossible to
generate a sentence with repeated letters.

From Network Outputs to Labellings
0®00

The Blank Character

CTC makes repeated letters possible by using a blank character, —.
The many-to-one mapping now has two steps: (1) eliminate all
duplicate characters, (2) THEN eliminate all blanks.

y:[fa_,eaevd]c B OZ:[f,e,d]

y:[f7ea_7e7d]c B OZZ[f,e,e7d]

y=[f,—fed]o B o z = [f,f,e,d]

From Network Outputs to Labellings
coeo

Probability of Labels Given Speech

With these definitions, the probability of z given x is:

p(zlx)= Y p(wlx),

reB-1(z)

@ m=[m,..., 7] is a time-aligned label sequence called a
“path.” Each path element is a label or a blank: 7 € LU {-}.

p(m|x) = Hym

e B71(z) is the set of all paths that match the label sequence z.
For example,

[f,e, e ed]

f,—e,—d
e =1 ol

From Network Outputs to Labellings
oooe

Temporal Classification

The temporal classification problem is now just:

h(x) = argmax p(l|x)
leL=T

= argmax Z p(m|x)
IeL=T cp-1()
-

= argmax Z Hy;t

IEL=T reB-1(1) t=1

o I =[h,...,Iv] is a label sequence of any length V < T where
l, €L

o m=[m,..., 7] is a path of length T where 7, € LU {-}.

The CTC Forward Algorithm
.

Outline

The CTC Forward Algorithm
o g

The CTC Forward Algorithm
©000000000

Finding the Best Label Sequence

@ The problem now is: how can we search the entire set
7 € B7L(l), for every possible label sequence?

@ Answer: the forward algorithm!

The CTC Forward Algorithm
0®00000000

CTC Forward Algorithm: The Modified Label Sequence

In order to express the CTC forward algorithm, we need to define a
modified label sequence, I. I' is equal to | with blanks inserted
between every pair of letters. Thus if

I =[f,e,d],

then
ll = [_) f) =€ d)_]°

If the length of lis |I|, then the length of I' is 2|I| + 1.

The CTC Forward Algorithm
00®0000000

CTC Forward Algorithm: Partial Sequences

We also need to define the following partial sequences:

X1:t = [X]_,...,Xt]
Tt = [T1, ..., Tt
V.= [/{,...,/é]

— { [_7 l17_7 l27 ey /5/2] S even
[_7 /17_7 /2, sy /(5_1)/2,_] s odd

The CTC Forward Algorithm
000®000000

The CTC Forward Algorithm

Definition: at(l'1:s) = p(V1:s|x1:¢). Computation:

@ Initialize:

ar([H) =2

on(f= hl) = v,

The neural network can either start out by generating a blank, in
which case I’ = [-], or it can start out by generating a real
character /1, in which case I' = [, /1].

The CTC Forward Algorithm
0000@00000

The CTC Forward Algorithm

@ Initialize:

ar([H]) = ¥
a1([~ hl) = yi
Q lterate:
(ar—1(V1s) + ar—1(Vis—1)) X y,z
............ ifll=—orll=1"/
|/] — IT g s s—2
ae(Pis) (ae—1(V1s) + ae—1(Viis—1) + ae1(V1is—2)) X v
............ otherwise

Repeating the same character (a;—1(l'1:5)) or adding one more
character (a;—1(I'1.s—1)) are always possible. Adding two more
characters (at—1(V'1:s—2)) is OK if the current character is not a
blank or a repeat.

The CTC Forward Algorithm
00000®0000

The CTC Forward Algorithm

1 2 3 T-2 T-1 T

Graves et al., 2006, Fig. 3. (c) ICML
Repeating the same character («;—1(V'1:5)) or adding one more
character (a;—1(l'1:s—1)) are always possible. Adding two more
characters (a;—1(V1:s—2)) is OK if the current character is not a
blank or a repeat.

The CTC Forward Algorithm
000000e000

The CTC Forward Algorithm

@ Initialize:

Q lterate:

(ap—1(V1:s) + ar—1(V1:5-1)) X ylz
............ ifll=—orll=1V/
|/ <) = IT /g s s—2
W) =0 (1) T ar 1 (Ve 1) + ae1(Vas-2)) %

............ otherwise

© Terminate:

p(liulx) = ar(V120) + a7(V12041)

The CTC Forward Algorithm
0000000800

The CTC Forward Algorithm

p(li.ulx1.7) = ar(V120) + a7(V'120+41)

The CTC Forward Algorithm
0000000080

Computational Issues

e In the HMM, a:(q) only depended on the final state. In CTC,
at(I'1:s) depends on the entire label sequence up to position
s. The complexity of this search is exponential in s. To make
it computationally tractable, use a beam search:

e Discard all but the best N candidates for each t.

o Compute all possible extensions to time t + 1.
o Repeat

@ As in the HMM, a;(l1:s) becomes very small, so Graves et
al. recommend using a scaled forward algorithm.

The CTC Forward Algorithm

000000000e

Computational Issues #1: Beam Search

@ a;(l'1:s) depends on the
entire label sequence up to
position s. The complexity
of this search is exponential
in s (shown).

@ To make it computationally
tractable, use a beam search
(not shown).

Graves et al., 2006, Fig. 2. (c) ICML

Conclusior
°

Outline

© Conclusions

Conclusior
°

Connectionist Temporal Classification

@ An RNN computes the probability of a label sequence, z,
given an input sequence X.

@ The key idea of CTC is a many-to-one mapping from paths to
label sequences. The recognition probability is then

pll)= > p(rlx),

TeB~1(z)

@ The CTC forward algorithm is just like the HMM forward
algorithm, except that, instead of «:(q), we compute

at(lllzs) = p(|,1:s|x1:t)

	Temporal Classification
	Recurrent Neural Networks
	From Network Outputs to Labellings
	The CTC Forward Algorithm
	Conclusions

