Lecture 19: Exam 2 Review

Mark Hasegawa-Johnson
All content CC-BY 4.0 unless otherwise specified.

ECE 537, Fall 2022
1. Admin Issues

2. Velichko & Zagoruyko: DTW

3. Atal: LPC

4. Rabiner: HMM
Outline

1. Admin Issues
2. Velichko & Zagoruyko: DTW
3. Atal: LPC
4. Rabiner: HMM
Admin Issues

- Exam is in class, Monday. If you need remote exam or conflict exam, tell me.
- One page handwritten notes, front and back.
- No calculators.
Outline

1. Admin Issues
2. Velichko & Zagoruyko: DTW
3. Atal: LPC
4. Rabiner: HMM
Dynamic Time Warping

- Similarity of two words is defined to be the maximum, among all possible alignments, of the average similarity of the aligned spectra.
- This is computed by dynamic programming (DP):
 \[A_{i,k} = \max (A_{i-1,k}, A_{i,k-1}, a_{i,k} + A_{i-1,k-1}) \]
- Similarity of any pair of spectra is
 \[a_{i,k} = \frac{2}{2 + \rho_{i,k}^2}, \]
 \[\rho_{i,k} = \sqrt{\sum_{d=1}^{5} \left(\ln \left(\frac{E_0^{(i)}}{E_d^{(i)}} \right) - \ln \left(\frac{E_0^{(k)}}{E_d^{(k)}} \right) \right)^2} \]
Outline

1. Admin Issues
2. Velichko & Zagoruyko: DTW
3. Atal: LPC
4. Rabiner: HMM
All-Pole Filters

\[H(z) = \frac{1}{1 - P(z)} = \frac{1}{1 - \sum_{k=1}^{p} a_k z^{-1}} = \frac{1}{\prod_{m=1}^{p} (1 - p_m z^{-1})} \]

This can be factored into second order sections with complex conjugate pole pairs; then we can get the impulse response as:

\[H(z) = \frac{C_1}{1 - p_1 z^{-1}} + \frac{C_1^*}{1 - p_1^* z^{-1}} \]

\[h[n] = C_1 p_1^n u[n] + C_1^* (p_1^*)^n u[n] \]
LPC

- Orthogonality principle: a_k minimizes

$$\sum_{n=0}^{N-1} e[n] = \sum_{n=0}^{N-1} \left(s[n] - \sum_{m=1}^{p} a_m s[n - m] \right)^2$$

if and only if $e[n] \perp s[n - k]$, meaning

$$\sum_{n=0}^{N-1} e[n]s[n - k] = 0$$

- p linear equations in p unknowns:

$$\vec{a} = \Phi^{-1} \vec{c}$$
Parcor Coefficients

- **Cholesky Decomposition**: find L_m such that $\Phi_m = L_m L_m^T$.

Then the equation $\Phi \vec{a} = \vec{c}$ can be solved in two steps:

\[
\begin{align*}
\vec{q}_m &= L_m^{-1} \vec{c}_m \\
\vec{a}_m &= L_m^{-T} \vec{q}_m
\end{align*}
\]

- The elements of \vec{q}_m are unchanged from one filter order to the next, so you can perform that first step iteratively, for increasing values of m.

- The Parcor coefficients, $k_m = q_m / \sqrt{\epsilon_m}$, are bounded to $|k_m| < 1$ if and only if the filter is stable, so you can guarantee stability by quantizing k_m instead of a_m.
Pitch Predictor

The pitch predictor turns a Gaussian white-noise-like signal, $v[n]$, into a signal with pitch periodicity, by

$$d[n] = v[n] + \sum_{m=1}^{3} \beta_m d[n - (P + m - 2)]$$

where P, the pitch period, needs to be calculated by some other method, e.g., by finding the peak of the autocorrelation.
Noise can be perceptually weighted, with a notch at each formant frequency, so that the quantizer is encouraged to shift noise toward the formants, where it will be masked:

\[1 - R(z) = \frac{1 - P_A(z)}{1 - P_B(z)} = \frac{\prod_{i=1}^{p}(1 - p_i z^{-1})}{\prod_{i=1}^{p}(1 - \alpha p_i z^{-1})}, \]
Methods for quantizing the residual

After removing the pitch periodicity from the residual, we need a way to quantize what’s left.

- Adaptive center-clipping: use bits to code the high-amplitude samples.
- Multi-pulse LPC: build up $v[n]$ one impulse at a time.
- Tree-coding and CELP: Just find the excitation that gives the best speech, who cares whether or not it’s related to the true LPC residual.
Outline

1. Admin Issues
2. Velichko & Zagoruyko: DTW
3. Atal: LPC
4. Rabiner: HMM
The Forward Algorithm

Definition: \(\alpha_t(i) \equiv p(\vec{o}_1, \ldots, \vec{o}_t, q_t = i | \lambda) \). Computation:

1. Initialize:
 \[\alpha_1(i) = \pi_i b_i(\vec{o}_1), \quad 1 \leq i \leq N \]

2. Iterate:
 \[\alpha_t(j) = \sum_{i=1}^{N} \alpha_{t-1}(i) a_{ij} b_j(\vec{o}_t), \quad 1 \leq j \leq N, \quad 2 \leq t \leq T \]

3. Terminate:
 \[p(O | \lambda) = \sum_{i=1}^{N} \alpha_T(i) \]
The Baum-Welch Algorithm: Derivation

The Baum-Welch algorithm maximizes $P(O|\lambda)$ iteratively. Each iteration finds $\bar{\lambda}$ that maximizes

$$Q(\lambda, \bar{\lambda}) = \sum_Q P(Q|O, \lambda) \ln P(O, Q|\bar{\lambda})$$

There are some constraints that need to be satisfied. If these constraints are of the form $C_i(\lambda) = 0$, then we can construct a Lagrangian of the form

$$\mathcal{L}(\bar{\lambda}) = Q(\lambda, \bar{\lambda}) - \sum_i \kappa_i C_i(\bar{\lambda}),$$

Find the value of $\bar{\lambda}$ that maximizes that, in terms of the Lagrange multipliers κ_i. Then set κ_i to the values that cause $C_i(\bar{\lambda}) = 0$.
The Baum-Welch Algorithm: Result

1. **Transition Probabilities:**

\[
\bar{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{j=1}^{N} \sum_{t=1}^{T-1} \xi_t(i,j)}
\]

2. **Gaussian Observation PDFs:**

\[
\bar{\mu}_i = \frac{\sum_{t=1}^{T} \gamma_t(i) \bar{\sigma}_t}{\sum_{t=1}^{T} \gamma_t(i)}
\]

\[
\bar{\Sigma}_i = \frac{\sum_{t=1}^{T} \gamma_t(i)(\bar{\sigma}_t - \bar{\mu}_i)(\bar{\sigma}_t - \bar{\mu}_i)^T}{\sum_{t=1}^{T} \gamma_t(i)}
\]
The Scaled Forward Algorithm

1. Initialize:

\[\hat{\alpha}_1(i) = \frac{1}{c_1} \pi_i b_i(\mathbf{o}_1) \]

2. Iterate:

\[\tilde{\alpha}_t(j) = \sum_{i=1}^{N} \hat{\alpha}_{t-1}(i) a_{ij} b_j(\mathbf{o}_t) \]

\[c_t = \sum_{j=1}^{N} \tilde{\alpha}_t(j) \]

\[\hat{\alpha}_t(j) = \frac{1}{c_t} \tilde{\alpha}_t(j) \]

3. Terminate:

\[\ln p(O|\lambda) = \sum_{t=1}^{T} \ln c_t \]