Admin	DTW	LPC	HMM

Lecture 19: Exam 2 Review

Mark Hasegawa-Johnson All content CC-BY 4.0 unless otherwise specified.

ECE 537, Fall 2022

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Admin	DTW	LPC	HMM

Admin	DTW	LPC	HMM
00	00	0000000	00000
Outline			

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● 回 ● の Q @

Admin	DTW	LPC	HMM
0•			
Admin Issues			

• Exam is in class, Monday. If you need remote exam or conflict exam, tell me.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

- One page handwritten notes, front and back.
- No calculators.

Admin	DTW	LPC	HMM
oo	●○	0000000	00000
Outline			

Admin	DTW	LPC	HMM
00	○●	0000000	00000
Dynamic Ti	me Warping		

- Similarity of two words is defined to be the maximum, among all possible alignments, of the average similarity of the aligned spectra.
- This is computed by dynamic programming (DP):

$$A_{i,k} = \max (A_{i-1,k}, A_{i,k-1}, a_{i,k} + A_{i-1,k-1})$$

• Similarity of any pair of spectra is $a_{i,k} = \frac{2}{2+\rho_{i,k}^2}$,

$$\rho_{i,k} = \sqrt{\sum_{d=1}^{5} \left(\ln \left(\frac{E_0^{(i)}}{E_d^{(i)}} \right) - \ln \left(\frac{E_0^{(k)}}{E_d^{(k)}} \right) \right)^2}$$

Admin	DTW	LPC	HMM
oo	oo	●000000	00000
Outline			

Admin	DTW	LPC	HMM
oo	oo	⊙●000000	00000
All-Pole Filters			

$$H(z) = \frac{1}{1 - P(z)} = \frac{1}{1 - \sum_{k=1}^{p} a_k z^{-1}} = \frac{1}{\prod_{m=1}^{p} (1 - p_m z^{-1})}$$

This can be factored into second order sections with complex conjugate pole pairs; then we can get the impulse response as:

$$H(z) = \frac{C_1}{1 - p_1 z^{-1}} + \frac{C_1^*}{1 - p_1^* z^{-1}}$$
$$h[n] = C_1 p_1^n u[n] + C_1^* (p_1^*)^n u[n]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Admin	DTW	LPC	HMM
oo	oo	○0●0000	00000
LPC			

• Orthogonality principle: *a_k* minimizes

$$\sum_{n=0}^{N-1} e^{2}[n] = \sum_{n=0}^{N-1} \left(s[n] - \sum_{m=1}^{p} a_{m} s[n-m] \right)^{2}$$

if and only if $e[n] \perp s[n-k]$, meaning

$$\sum_{n=0}^{N-1} e[n]s[n-k] = 0$$

• *p* linear equations in *p* unknowns:

$$\vec{a} = \Phi^{-1}\vec{c}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Admin	DTW	LPC	HMM
		000000	00000
Parcor Coeffi	cients		

- Cholesky Decomposition: find L_m such that $\Phi_m = L_m L_m^T$.
- Then the equation $\Phi \vec{a} = \vec{c}$ can be solved in two steps:

$$ec{q}_m = L_m^{-1}ec{c}_m$$

 $ec{a}_m = L_m^{-T}ec{q}_m$

- The elements of \vec{q}_m are unchanged from one filter order to the next, so you can perform that first step iteratively, for increasing values of m.
- The Parcor coefficients, k_m = q_m/√ε_m, are bounded to |k_m| < 1 if and only if the filter is stable, so you can guarantee stability by quantizing k_m instead of a_m.

Admin	DTW	LPC	HMM
00	oo	0000000	00000
Pitch Predictor			

The pitch predictor turns a Gaussian white-noise-like signal, v[n], into a signal with pitch periodicity, by

$$d[n] = v[n] + \sum_{m=1}^{3} \beta_m d[n - (P + m - 2)]$$

where P, the pitch period, needs to be calculated by some other method, e.g., by finding the peak of the autocorrelation.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Admin	DTW	LPC	HMM
		0000000	

Perceptual Noise Weighting

Noise can be perceptually weighted, with a notch at each formant frequency, so that the quantizer is encouraged to shift noise toward the formants, where it will be masked:

$$1 - R(z) = \frac{1 - P_A(z)}{1 - P_B(z)} = \frac{\prod_{i=1}^{p} (1 - p_i z^{-1})}{\prod_{i=1}^{p} (1 - \alpha p_i z^{-1})},$$

	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		
		0000000	
Admin	DTW	LPC	HMM

Methods for quantizing the residual

After removing the pitch periodicity from the residual, we need a way to quantize what's left.

- Adaptive center-clipping: use bits to code the high-amplitude samples.
- Multi-pulse LPC: build up v[n] one impulse at a time.
- Tree-coding and CELP: Just find the excitation that gives the best speech, who cares whether or not it's related to the true LPC residual.

Admin	DTW	LPC	HMM
oo	oo	0000000	●0000
Outline			

Admin	DTW	LPC	HMM
oo	oo	0000000	○●000
The Forward	d Algorithm		

Definition: $\alpha_t(i) \equiv p(\vec{o}_1, \dots, \vec{o}_t, q_t = i | \lambda)$. Computation:

Initialize:

$$\alpha_1(i) = \pi_i b_i(\vec{o_1}), \quad 1 \le i \le N$$

Iterate:

$$\alpha_t(j) = \sum_{i=1}^N \alpha_{t-1}(i) a_{ij} b_j(\vec{o}_t), \quad 1 \le j \le N, \ 2 \le t \le T$$

I Terminate:

$$p(O|\lambda) = \sum_{i=1}^{N} \alpha_{T}(i)$$

(ロ)、(型)、(E)、(E)、 E) の(()

Admin	DTW	LPC	HMM
			00000

The Baum-Welch Algorithm: Derivation

The Baum-Welch algorithm maximizes $P(O|\lambda)$ iteratively. Each iteration finds $\bar{\lambda}$ that maximizes

$$Q(\lambda, \bar{\lambda}) = \sum_{Q} P(Q|O, \lambda) \ln P(O, Q|\bar{\lambda})$$

There are some constraints that need to be satisfied. If these constraints are of the form $C_i(\lambda) = 0$, then we can construct a Lagrangian of the form

$$\mathcal{L}(\bar{\lambda}) = Q(\lambda, \bar{\lambda}) - \sum_{i} \kappa_i C_i(\bar{\lambda}),$$

Find the value of $\overline{\lambda}$ that maximizes that, in terms of the Lagrange multipliers κ_i . Then set κ_i to the values that cause $C_i(\overline{\lambda}) = 0$.

The Baum-Welch Algorithm: Result

1 Transition Probabilities:

$$\bar{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{j=1}^{N} \sum_{t=1}^{T-1} \xi_t(i,j)}$$

2 Gaussian Observation PDFs:

$$\bar{\mu}_i = \frac{\sum_{t=1}^T \gamma_t(i)\vec{o}_t}{\sum_{t=1}^T \gamma_t(i)}$$
$$\bar{\Sigma}_i = \frac{\sum_{t=1}^T \gamma_t(i)(\vec{o}_t - \vec{\mu}_i)(\vec{o}_t - \vec{\mu}_i)^T}{\sum_{t=1}^T \gamma_t(i)}$$

▲ロト ▲御 ト ▲臣 ト ▲臣 ト → 臣 → の々ぐ

Admin	DTW	LPC	HMM
			00000

The Scaled Forward Algorithm

Initialize:

$$\hat{\alpha}_1(i) = \frac{1}{c_1} \pi_i b_i(\vec{o}_1)$$

2 Iterate:

$$\tilde{\alpha}_t(j) = \sum_{i=1}^N \hat{\alpha}_{t-1}(i) a_{ij} b_j(\vec{o}_t)$$
$$c_t = \sum_{j=1}^N \tilde{\alpha}_t(j)$$
$$\hat{\alpha}_t(j) = \frac{1}{c_t} \tilde{\alpha}_t(j)$$

I Terminate:

$$\ln p(O|\lambda) = \sum_{t=1}^{T} \ln c_t$$