Lecture 19: Exam 2 Review

Mark Hasegawa-Johnson
All content CC-BY 4.0 unless otherwise specified.

ECE 537, Fall 2022
(1) Admin Issues
(2) Velichko \& Zagoruyko: DTW
(3) Atal: LPC
(4) Rabiner: HMM

Outline

(1) Admin Issues

(2) Velichko \& Zagoruyko: DTW

(3) Atal: LPC

4 Rabiner: HMM

Admin Issues

- Exam is in class, Monday. If you need remote exam or conflict exam, tell me.
- One page handwritten notes, front and back.
- No calculators.

Outline

(1) Admin Issues

(2) Velichko \& Zagoruyko: DTW
(3) Atal: LPC
(4) Rabiner: HMM

Dynamic Time Warping

- Similarity of two words is defined to be the maximum, among all possible alignments, of the average similarity of the aligned spectra.
- This is computed by dynamic programming (DP):

$$
A_{i, k}=\max \left(A_{i-1, k}, A_{i, k-1}, a_{i, k}+A_{i-1, k-1}\right)
$$

- Similarity of any pair of spectra is $a_{i, k}=\frac{2}{2+\rho_{i, k}^{2}}$,

$$
\rho_{i, k}=\sqrt{\sum_{d=1}^{5}\left(\ln \left(\frac{E_{0}^{(i)}}{E_{d}^{(i)}}\right)-\ln \left(\frac{E_{0}^{(k)}}{E_{d}^{(k)}}\right)\right)^{2}}
$$

Outline

(1) Admin Issues

(2) Velichko \& Zagoruyko: DTW

(3) Atal: LPC

4 Rabiner: HMM

All-Pole Filters

$$
H(z)=\frac{1}{1-P(z)}=\frac{1}{1-\sum_{k=1}^{p} a_{k} z^{-1}}=\frac{1}{\prod_{m=1}^{p}\left(1-p_{m} z^{-1}\right)}
$$

This can be factored into second order sections with complex conjugate pole pairs; then we can get the impulse response as:

$$
\begin{aligned}
H(z) & =\frac{C_{1}}{1-p_{1} z^{-1}}+\frac{C_{1}^{*}}{1-p_{1}^{*} z^{-1}} \\
h[n] & =C_{1} p_{1}^{n} u[n]+C_{1}^{*}\left(p_{1}^{*}\right)^{n} u[n]
\end{aligned}
$$

- Orthogonality principle: a_{k} minimizes

$$
\sum_{n=0}^{N-1} e^{2}[n]=\sum_{n 0}^{N-1}\left(s[n]-\sum_{m=1}^{p} a_{m} s[n-m]\right)^{2}
$$

if and only if $e[n] \perp s[n-k]$, meaning

$$
\sum_{n=0}^{N-1} e[n] s[n-k]=0
$$

- p linear equations in p unknowns:

$$
\vec{a}=\Phi^{-1} \vec{c}
$$

Parcor Coefficients

- Cholesky Decomposition: find L_{m} such that $\Phi_{m}=L_{m} L_{m}^{T}$.
- Then the equation $\Phi \vec{a}=\vec{c}$ can be solved in two steps:

$$
\begin{aligned}
\vec{q}_{m} & =L_{m}^{-1} \vec{c}_{m} \\
\vec{a}_{m} & =L_{m}^{-T} \vec{q}_{m}
\end{aligned}
$$

- The elements of \vec{q}_{m} are unchanged from one filter order to the next, so you can perform that first step iteratively, for increasing values of m.
- The Parcor coefficients, $k_{m}=q_{m} / \sqrt{\epsilon_{m}}$, are bounded to $\left|k_{m}\right|<1$ if and only if the filter is stable, so you can guarantee stability by quantizing k_{m} instead of a_{m}.

Pitch Predictor

The pitch predictor turns a Gaussian white-noise-like signal, $v[n]$, into a signal with pitch periodicity, by

$$
d[n]=v[n]+\sum_{m=1}^{3} \beta_{m} d[n-(P+m-2)]
$$

where P, the pitch period, needs to be calculated by some other method, e.g., by finding the peak of the autocorrelation.

Perceptual Noise Weighting

Noise can be perceptually weighted, with a notch at each formant frequency, so that the quantizer is encouraged to shift noise toward the formants, where it will be masked:

$$
1-R(z)=\frac{1-P_{A}(z)}{1-P_{B}(z)}=\frac{\prod_{i=1}^{p}\left(1-p_{i} z^{-1}\right)}{\prod_{i=1}^{p}\left(1-\alpha p_{i} z^{-1}\right)}
$$

Methods for quantizing the residual

After removing the pitch periodicity from the residual, we need a way to quantize what's left.

- Adaptive center-clipping: use bits to code the high-amplitude samples.
- Multi-pulse LPC: build up $v[n]$ one impulse at a time.
- Tree-coding and CELP: Just find the excitation that gives the best speech, who cares whether or not it's related to the true LPC residual.

Outline

(1) Admin Issues

(2) Velichko \& Zagoruyko: DTW

(3) Atal: LPC
(4) Rabiner: HMM

The Forward Algorithm

Definition: $\alpha_{t}(i) \equiv p\left(\vec{o}_{1}, \ldots, \vec{o}_{t}, q_{t}=i \mid \lambda\right)$. Computation:
(1) Initialize:

$$
\alpha_{1}(i)=\pi_{i} b_{i}\left(\vec{o}_{1}\right), \quad 1 \leq i \leq N
$$

(2) Iterate:

$$
\alpha_{t}(j)=\sum_{i=1}^{N} \alpha_{t-1}(i) a_{i j} b_{j}\left(\vec{o}_{t}\right), \quad 1 \leq j \leq N, 2 \leq t \leq T
$$

(3) Terminate:

$$
p(O \mid \lambda)=\sum_{i=1}^{N} \alpha_{T}(i)
$$

The Baum-Welch Algorithm: Derivation

The Baum-Welch algorithm maximizes $P(O \mid \lambda)$ iteratively. Each iteration finds $\bar{\lambda}$ that maximizes

$$
Q(\lambda, \bar{\lambda})=\sum_{Q} P(Q \mid O, \lambda) \ln P(O, Q \mid \bar{\lambda})
$$

There are some constraints that need to be satisfied. If these constraints are of the form $C_{i}(\lambda)=0$, then we can construct a Lagrangian of the form

$$
\mathcal{L}(\bar{\lambda})=Q(\lambda, \bar{\lambda})-\sum_{i} \kappa_{i} C_{i}(\bar{\lambda})
$$

Find the value of $\bar{\lambda}$ that maximizes that, in terms of the Lagrange multipliers κ_{i}. Then set κ_{i} to the values that cause $C_{i}(\bar{\lambda})=0$.
(1) Transition Probabilities:

$$
\bar{a}_{i j}=\frac{\sum_{t=1}^{T-1} \xi_{t}(i, j)}{\sum_{j=1}^{N} \sum_{t=1}^{T-1} \xi_{t}(i, j)}
$$

(2) Gaussian Observation PDFs:

$$
\begin{gathered}
\bar{\mu}_{i}=\frac{\sum_{t=1}^{T} \gamma_{t}(i) \vec{o}_{t}}{\sum_{t=1}^{T} \gamma_{t}(i)} \\
\bar{\Sigma}_{i}=\frac{\sum_{t=1}^{T} \gamma_{t}(i)\left(\vec{o}_{t}-\vec{\mu}_{i}\right)\left(\vec{o}_{t}-\vec{\mu}_{i}\right)^{T}}{\sum_{t=1}^{T} \gamma_{t}(i)}
\end{gathered}
$$

The Scaled Forward Algorithm

(1) Initialize:

$$
\hat{\alpha}_{1}(i)=\frac{1}{c_{1}} \pi_{i} b_{i}\left(\vec{o}_{1}\right)
$$

(2) Iterate:

$$
\begin{aligned}
\tilde{\alpha}_{t}(j) & =\sum_{i=1}^{N} \hat{\alpha}_{t-1}(i) a_{i j} b_{j}\left(\vec{o}_{t}\right) \\
c_{t} & =\sum_{j=1}^{N} \tilde{\alpha}_{t}(j) \\
\hat{\alpha}_{t}(j) & =\frac{1}{c_{t}} \tilde{\alpha}_{t}(j)
\end{aligned}
$$

(3) Terminate:

$$
\ln p(O \mid \lambda)=\sum_{t=1}^{T} \ln c_{t}
$$

