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Hidden Markov Model

@ Start in state g; = i with pmf 7;.
@ Generate an observation, 0, with pdf b;(0).
© Transition to a new state, g:1 = j, according to pmf a;;.

Q Repeat.
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The Three Problems for an HMM

© Recognition: Given two different HMMs, A1 and ), and an
observation sequence O. Which HMM was more likely to have
produced O? In other words, p(O|A1) > p(O|X2)?

@ Segmentation: What is p(q: = i|O, \)?

@ Training: Given an initial HMM ), and an observation
sequence O, can we find X such that p(O|\) > p(O|\)?
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The Forward Algorithm

Definition: a(i) = p(o1, ..., 0t g+ = i|\). Computation:
O Initialize:
al(i) = 71','b,'(51), 1<i<N

Q lterate:

aelj) = Zatfl(")aijbj(at), 1<j<N,2<t<T

© Terminate:

p(O|)) = ZQT
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The Backward Algorithm

Definition: S¢(i) = p(0¢+1,--.,07|9: = i, A). Computation:

@ Initialize:
Br(i)=1, 1<i<N

Q lterate:
() =3 aybj(6t+1)Besa(i), 1<i<N, 1<t<T—1
j=1
© Terminate:

O|A Zﬂ-l i o1 /81
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Segmentation

@ The State Posterior:

| | (i) Be(i)
(i) = : = 1|0, A) =
el = plae =10 = S k)

@ The Segment Posterior:

gt(iv.j) = P(Qt =1,qt+1 =f|0,)\)
_ a:(1)ajjbj(0r41)Be1()
Spet ooty ove(k)akeby(Gri1) Besa(€)
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The Three Problems for an HMM

© Recognition: Given two different HMMs, A1 and ), and an
observation sequence O. Which HMM was more likely to have
produced O? In other words, p(O|A1) > p(O|X2)?

@ Segmentation: What is p(q: = i|O, \)?

@ Training: Given an initial HMM ), and an observation
sequence O, can we find X such that p(O|\) > p(O|\)?
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© Maximum-Likelihood Training of an HMM
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Maximum Likelihood Training

Suppose we're given several observation sequences of the form
O =[o1,...,07]. Suppose, also, that we have some initial guess
about the values of the model parameters (our initial guess doesn't
have to be very good). Maximum likelihood training means we
want to compute a new set of parameters, A = {7'r,-, ajj, bj(5)} that
maximize p(O|\).
@ |Initial State Probabilities: Find values of 7;, 1 < <N,
that maximize p(O|\).
@ Transition Probabilities: Find values of aj, 1<i,j<N,
that maximize p(O|A).
© Observation Probabilities: Learn b;(5). What does that
mean, actually?
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Learning the Observation Probabilities

There are four typical ways of modeling the observations:

O Discrete: Vector quantize 0, using some VQ method.
Suppose G is the k'™ codevector; then we just need to learn
bj(k) such that

@ Gaussian: Model bj(k) as a Gaussian or mixture Gaussian,
and learn its parameters.

© Neural Net: Model b;(k) as a neural net, and learn its
parameters.

For now, assume discrete observations.
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Maximum Likelihood Training

Given discrete observations, we need to learn the following
parameters:

@ Initial State Probabilities: 7; such that

N
720, ) @i=1
i=1

@ Transition Probabilities: a;; such that

N
5 >0, > a=1
j=1
© Observation Probabilities: b;(k) such that

K
bi(k)>0, > bj(k)=1
k=1
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Maximum Likelihood Training with Known State Sequence

Impossible assumption: Suppose that we actually know the state
sequences, Q = [q1, ..., qT], matching with each observation
sequence O = [0, ...,07]|. Then what would be the
maximum-likelihood parameters?
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Maximum Likelihood Training with Known State Sequence

Our goal is to find A = {m;, a;;, bj(k)} in order to maximize

L(A) =Inp(Q,0N)
= Inmg, + Inbg,(01) + Inag, g, + bg,(02) + ...

N [N K
:|n7Tq1+Z Zn,-jlna,-j—FZm,-kln bi(k)
=1 j=1 k=1

where
@ njj is the number of times we saw (g = i, qr+1 = Jj),

@ mjx is the number of times we saw (q: = i, ks = k)



ML
00000®00000

Maximum Likelihood Training with Known State Sequence

N [N K
L(N) = In7rq1+z njjIn aij+zmik|n bi(k)
1 k=1

i=1 \j=

When we differentiate that, we find the following derivatives:

o _[1i=a
on; 0 otherwise

oL njj
8a,-j - a,-j
oL mjk

Obj(k) — bj(k)

These derivatives are never equal to zero! What went wrong?
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Maximum Likelihood Training with Known State Sequence

Here's the problem: we forgot to include the constraints

Ziﬂ_i - 1, Z_] aij = 1, and Zk bj(k) =11

We can include the constraints using a Lagrangian optimization.
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Maximum Likelihood Training with Known State Sequence

The Lagrangian, J()), is the thing we want to optimize (L£()\)),
plus the things that should be zero, each of which is multiplied by
an arbitrary constant called a Lagrange multiplier:

J(N) In7rq1+z Znulnau—l—Zm,klnb

i=1 \j=1

N N N N M
—Hi(l—Zﬂ',')—l-Z,u/ 1—Za,-j —}-ZV,' (1—ij(k)>
i—1 i—1 =1 i—1 k=1

@ First solve for the parameters as functions of the Lagrange
multipliers.

@ Second, set the Lagrange multipliers equal to whatever value
will zero out the constraints.
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Maximum Likelihood Training with Known State Sequence

Step 1: Solve for the parameters as functions of the Lagrange
multipliers. If we set
0T(N) _ 9T _9T() _

87‘(,’ N aa,-j N 8bjk _0’

we get:

1 .
_ s i=aq _ o - mj
7TI: K i s aij: —U’ b_/(k): 71
otherwise i vj
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Maximum Likelihood Training with Known State Sequence

Step 2: Set the Lagrange multipliers to whatever value zeros out
the constraints:

= _ 1 /= aq1
Ti=N 0 otherwise

j=—
i = N
2 j=1Nij
_ mik
bj(k) ’
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Maximum Likelihood Training with Known State Sequence

Using the Lagrange multiplier method, we can show that the
maximum likelihood parameters for the HMM are:

@ Initial State Probabilities:

_ 7 state sequences that start with g1 =i
e # state sequences in training data

@ Transition Probabilities:

5 # frames in which g;—1 =1/,q: =
ij =

# frames in which g;_1 = i
© Observation Probabilities:

_ # frames in which g = j, k; = k

E ok
bj(k) # frames in which q; = j
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© Baum-Welch Re-Estimation
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Expectation Maximization

When the true state sequence is unknown, then we can’'t maximize
the likelihood p(O, Q|\) directly. Instead, we maximize Baum's
auxilary function:

QA X) =Y p(QI0,A)Inp(0, QIX)
Q

This method has two key advantages:
@ The maximizer of Q(\, \) can be computed analytically.
@ Baum proved that, regardless of the value of ),

m/_\axQ()\,S\) = P(O|\) > P(O|)\)
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Baum-Welch Re-Estimation: Overview

@ Start out by setting A to any arbitrary initial value.
Q lterate:

@ Find A = argmax Q(X, A)

@ Set A=)

@ Stop when P(O|\) stops (quickly) increasing.
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Calculating the Baum Auxiliary

The Baum auxiliary is:

Q(A, 5‘) = ZP(Q‘Ov A)Inp(O, Q|5‘)
Q
N

=>» p(gq1=1il0,\)InT7;

Bl
_

p(q: = i,qe+1 = j|O,A)In ajj

+
M-
M-

,.,.
Il
A
I
—
—~
Il
A

p(g: = i, 00 = k|O, \) In b;(k)

+
M~
M=
WE

H
Il
,_.
Il
—
=
Il
N

Now we need to find those three probabilities.
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Calculating the Baum Auxiliary

First: p(g1 = i|O, \). We already know this one! It's

p(qr = i|O, ) = 1(i)
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Calculating the Baum Auxiliary

Second: p(q: = i,qr+1 = i|O, A). This one is a two-step state
posterior, calculated similar to . Rabiner uses the letter £ for this
probability:

o p(qt = i7Qt+1 :_j, O’/\)
B P(O|)
_ae(i)ajbi(011)Ber1())
B P(O[))

P(Qt =1,qt41 :j|oa>‘)

= ‘St(iJ)
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Calculating the Baum Auxiliary

Finally: p(q: = i, 0 = k|O, \).

) =ilO,\) o=k
p(qt =i,0; = k|07)\) — {g(qt ‘ ) t

otherwise

0 otherwise

_ {%(/) or = k
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Calculating the Baum Auxiliary

Putting it all together,

QA A) =) p(QIO,\)Inp(0, QIA)
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Maximizing the Baum Auxiliary

Now let's create a Lagrangian:

N N T-1 N M i
T\ = Z DInFi+ > 3> &l )ina+ Y > Ye(i) In E
i=1 i=1 j=1 t=1 i=1 k=1 t:or=k

N N N M _
—i—/ﬁ(l—Zﬁ';)—i—Zu; 1-) 5 Zu, (1—ij(k)>
i=1 i=1 j=1 k=

.. differentiate it, and set the derivative equal to zero.
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Maximizing the Baum Auxiliary

Here's the result of that differentiation:
@ Initial State Probabilities:

7 — )
Sy (i)

@ Transition Probabilities:
S i &)
j— _ ..
Sy e &elin )

© Observation Probabilities:

Zt:ot:k Vf(l)
Y1 ok 1)

bj(k) =
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Maximizing the Baum Auxiliary

If you look closely at the equations on the previous slide, you will
see that they are just like the known-state case, except that
instead of counting known state frequencies, we now compute
expected state frequencies!

@ Initial State Probabilities:

_ E [# state sequences that start with g1 = /]
e # state sequences in training data

@ Transition Probabilities:

5. — E [# frames in which g:_1 = i, q; = j]
Y E [# frames in which g;—1 = i]

© Observation Probabilities:

Bi(k) = E [# frames in which g; = j, oy = k]
T E [# frames in which g; = J]
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@ Gaussian Observation Probabilities
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Baum-Welch with Gaussian Probabilities

The requirement that we vector-quantize the observations is a
problem. It means that we can’t model the observations very
precisely.

It would be better if we could model the observation likelihood,
b;(3), as a probability density in the space 6 € . One way is to
use a parameterized function that is guaranteed to be a properly
normalized pdf. For example, a Gaussian:

bi(0) = N (0 jii, Z;)
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Calculating the Baum Auxiliary

The Baum auxiliary is now:

QA 5‘) = Z p(Q[O,A)Inp(O, Q|5‘)

= Z'yl( )InT;

T-1

N N
+D 3> &li)inay

i=1 j=1 t=1

N T
+227t i) InN (o fii, X)

i=1 t=1
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Maximizing the Baum Auxiliary

When we maximize the Baum auxiliary, we get:

T o =
- > =1 7t(i) 0t

=

>y ve()

T = Zthl Ye(1)(0r — fi) (0 — ﬁi)T
' T .
> o1 7e(i)
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Maximizing the Baum Auxiliary

Notice the similarity to what we would do if the states were
known:

e Known states: y; is the sample mean of the observations, ¥;
is their sample variance.
@ Known states:

o u; is the weighted average, where the weights are (/).
e Y ; is the weighted sample variance, where the weights are

e (7).
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© Summary
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The Baum-Welch Algorithm: Initial and Transition

Probabilities

@ Initial State Probabilities:

R Zsequences Wl(l)
' # sequences

@ Transition Probabilities:
NS Sy ()
j — _ ..
ZJ,'V:1 ZtT:11 (i ))
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The Baum-Welch Algorithm: Observation Probabilities

@ Discrete Observation Probabilities:

@ Gaussian Observation PDFs:

T N =
_ ey 7e(1)0k

=

31 7e(7)

P = Zz—:l ~¢(1)(0r — fii)(0r — ﬁi)T
Zthl Ve (i)

™M
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