Review	ML	Baum-Welch	Gaussians	Summary
0000000	00000000000	0000000000	00000	000

Lecture 15: A tutorial on hidden Markov models and selected applications in speech recognition, part 2

Mark Hasegawa-Johnson All content CC-BY 4.0 unless otherwise specified.

ECE 537, Fall 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Review	ML	Baum-Welch	Gaussians	Summary

- 2 Maximum-Likelihood Training of an HMM
- 3 Baum-Welch Re-Estimation
- Gaussian Observation Probabilities

Review	ML	Baum-Welch	Gaussians	Summary
●oooooo	00000000000	0000000000	00000	000
Outline				

1 Review: Hidden Markov Models

- 2 Maximum-Likelihood Training of an HMM
- 3 Baum-Welch Re-Estimation
 - 4 Gaussian Observation Probabilities

Review	ML	Baum-Welch	Gaussians	Summary
○●00000	00000000000	0000000000	00000	000
Hidden N	Markov Model			

- Start in state $q_t = i$ with pmf π_i .
- **②** Generate an observation, \vec{o} , with pdf $b_i(\vec{o})$.
- Solution Transition to a new state, $q_{t+1} = j$, according to pmf a_{ij} .

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

④ Repeat.

 Review
 ML
 Baum-Welch
 Gaussians
 S

 000000
 0000000000
 000000000
 00000
 00000

The Three Problems for an HMM

Recognition: Given two different HMMs, λ₁ and λ₂, and an observation sequence *O*. Which HMM was more likely to have produced *O*? In other words, p(O|λ₁) > p(O|λ₂)?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- **2** Segmentation: What is $p(q_t = i | O, \lambda)$?
- Training: Given an initial HMM λ, and an observation sequence O, can we find λ
 such that p(O|λ) > p(O|λ)?

Definition:
$$\alpha_t(i) \equiv p(\vec{o_1}, \dots, \vec{o_t}, q_t = i | \lambda)$$
. Computation:

Initialize:

$$\alpha_1(i) = \pi_i b_i(\vec{o_1}), \quad 1 \leq i \leq N$$

Iterate:

$$\alpha_t(j) = \sum_{i=1}^N \alpha_{t-1}(i) a_{ij} b_j(\vec{o}_t), \quad 1 \le j \le N, \ 2 \le t \le T$$

I Terminate:

$$p(O|\lambda) = \sum_{i=1}^{N} \alpha_{T}(i)$$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Definition:
$$\beta_t(i) \equiv p(\vec{o}_{t+1}, \dots, \vec{o}_T | q_t = i, \lambda)$$
. Computation:

Initialize:

$$\beta_T(i) = 1, \quad 1 \le i \le N$$

Iterate:

$$eta_t(i) = \sum_{j=1}^N a_{ij} b_j(ec{o}_{t+1}) eta_{t+1}(j), \ \ 1 \le i \le N, \ 1 \le t \le T-1$$

I Terminate:

$$p(O|\lambda) = \sum_{i=1}^{N} \pi_i b_i(\vec{o_1}) \beta_1(i)$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Review	ML	Baum-Welch	Gaussians	Summary
○○○○○●○	00000000000	0000000000	00000	000
Segmenta	ition			

1 The State Posterior:

$$\gamma_t(i) = p(q_t = i | O, \lambda) = \frac{\alpha_t(i)\beta_t(i)}{\sum_{k=1}^N \alpha_t(k)\beta_t(k)}$$

2 The Segment Posterior:

$$\xi_t(i,j) = p(q_t = i, q_{t+1} = j | O, \lambda) \\ = \frac{\alpha_t(i) a_{ij} b_j(\vec{o}_{t+1}) \beta_{t+1}(j)}{\sum_{k=1}^N \sum_{\ell=1}^N \alpha_t(k) a_{k\ell} b_\ell(\vec{o}_{t+1}) \beta_{t+1}(\ell)}$$

シック 単 (中本) (中本) (日)

The Three Problems for an HMM

Recognition: Given two different HMMs, λ₁ and λ₂, and an observation sequence *O*. Which HMM was more likely to have produced *O*? In other words, p(O|λ₁) > p(O|λ₂)?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- **2** Segmentation: What is $p(q_t = i | O, \lambda)$?
- Training: Given an initial HMM λ, and an observation sequence O, can we find λ
 such that p(O|λ) > p(O|λ)?

Review	ML	Baum-Welch	Gaussians	Summary
0000000	●00000000000	0000000000	00000	000
Outline				

- 1 Review: Hidden Markov Models
- 2 Maximum-Likelihood Training of an HMM
- 3 Baum-Welch Re-Estimation
 - 4 Gaussian Observation Probabilities

Suppose we're given several observation sequences of the form $O = [\vec{o}_1, \ldots, \vec{o}_T]$. Suppose, also, that we have some initial guess about the values of the model parameters (our initial guess doesn't have to be very good). Maximum likelihood training means we want to compute a new set of parameters, $\bar{\lambda} = \{\bar{\pi}_i, \bar{a}_{ij}, \bar{b}_j(\vec{o})\}$ that maximize $p(O|\bar{\lambda})$.

- Initial State Probabilities: Find values of π
 _i, 1 ≤ i ≤ N, that maximize p(O|λ).
- **②** Transition Probabilities: Find values of \bar{a}_{ij} , $1 \le i, j \le N$, that maximize $p(O|\bar{\lambda})$.
- **Observation Probabilities:** Learn $\bar{b}_j(\vec{o})$. What does that mean, actually?

There are four typical ways of modeling the observations:

Discrete: Vector quantize *o*, using some VQ method.
 Suppose *o* is the kth codevector; then we just need to learn b_i(k) such that

$$b_j(k)\geq 0, \quad \sum_{k=0}^{K-1}b_j(k)=1$$

- **Q** Gaussian: Model $b_j(k)$ as a Gaussian or mixture Gaussian, and learn its parameters.
- Neural Net: Model b_j(k) as a neural net, and learn its parameters.
- For now, assume discrete observations.

ML Review Baum-Welch Gaussians

Maximum Likelihood Training

Given discrete observations, we need to learn the following parameters:

1 Initial State Probabilities: $\bar{\pi}_i$ such that

$$ar{\pi}_i \geq 0, \quad \sum_{i=1}^N ar{\pi}_i = 1$$

2 Transition Probabilities: \bar{a}_{ii} such that

$$ar{a}_{ij} \geq 0, \quad \sum_{j=1}^{N}ar{a}_{ij} = 1$$

Observation Probabilities: $\bar{b}_i(k)$ such that

$$ar{b}_j(k) \geq 0, \quad \sum_{k=1}^K ar{b}_j(k) = 1$$

Impossible assumption: Suppose that we actually know the state sequences, $Q = [q_1, \ldots, q_T]$, matching with each observation sequence $O = [\vec{o}_1, \ldots, \vec{o}_T]$. Then what would be the maximum-likelihood parameters?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Our goal is to find $\lambda = \{\pi_i, a_{ij}, b_j(k)\}$ in order to maximize

$$\mathcal{L}(\lambda) = \ln p(Q, O|\lambda)$$

= $\ln \pi_{q_1} + \ln b_{q_1}(o_1) + \ln a_{q_1,q_2} + b_{q_2}(o_2) + \dots$
= $\ln \pi_{q_1} + \sum_{i=1}^{N} \left(\sum_{j=1}^{N} n_{ij} \ln a_{ij} + \sum_{k=1}^{K} m_{ik} \ln b_i(k) \right)$

where

• n_{ij} is the number of times we saw $(q_t = i, q_{t+1} = j)$,

• m_{ik} is the number of times we saw $(q_t = i, k_t = k)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 Review
 ML
 Baum-Welch
 Gaussians
 Summary

 Maximum
 Likelihood
 Training
 with
 Known
 State
 Sequence

$$\mathcal{L}(\lambda) = \ln \pi_{q_1} + \sum_{i=1}^{N} \left(\sum_{j=1}^{N} n_{ij} \ln a_{ij} + \sum_{k=1}^{K} m_{ik} \ln b_i(k) \right)$$

When we differentiate that, we find the following derivatives:

$$\frac{\partial \mathcal{L}}{\partial \pi_i} = \begin{cases} \frac{1}{\pi_i} & i = q_1 \\ 0 & \text{otherwise} \end{cases}$$
$$\frac{\partial \mathcal{L}}{\partial a_{ij}} = \frac{n_{ij}}{a_{ij}}$$
$$\frac{\partial \mathcal{L}}{\partial b_j(k)} = \frac{m_{jk}}{b_j(k)}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

These derivatives are **never** equal to zero! What went wrong?

Here's the problem: we forgot to include the constraints $\sum_i \pi_i = 1$, $\sum_j a_{ij} = 1$, and $\sum_k b_j(k) = 1!$ We can include the constraints using a Lagrangian optimization.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Lagrangian, $\mathcal{J}(\lambda)$, is the thing we want to optimize $(\mathcal{L}(\lambda))$, plus the things that should be zero, each of which is multiplied by an arbitrary constant called a **Lagrange multiplier**:

$$\mathcal{J}(\lambda) = \ln \pi_{q_1} + \sum_{i=1}^{N} \left(\sum_{j=1}^{N} n_{ij} \ln a_{ij} + \sum_{k=1}^{K} m_{ik} \ln b_i(k) \right)$$

$$+\kappa\left(1-\sum_{i=1}^{N}\pi_{i}\right)+\sum_{i=1}^{N}\mu_{i}\left(1-\sum_{j=1}^{N}a_{ij}\right)+\sum_{i=1}^{N}\nu_{i}\left(1-\sum_{k=1}^{M}b_{j}(k)\right)$$

- First solve for the parameters as functions of the Lagrange multipliers.
- Second, set the Lagrange multipliers equal to whatever value will zero out the constraints.

Step 1: Solve for the parameters as functions of the Lagrange multipliers. If we set

$$rac{\partial \mathcal{J}(\lambda)}{\partial \pi_i} = rac{\partial \mathcal{J}(\lambda)}{\partial a_{ij}} = rac{\partial \mathcal{J}(\lambda)}{\partial b_{jk}} = 0,$$

we get:

$$\bar{\pi}_i = \begin{cases} \frac{1}{\kappa} & i = q_1 \\ 0 & \text{otherwise} \end{cases}, \quad \bar{a}_{ij} = \frac{n_{ij}}{\mu_i}, \quad \bar{b}_j(k) = \frac{m_{jk}}{\nu_j}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Step 2: Set the Lagrange multipliers to whatever value zeros out the constraints:

$$ar{\pi}_i = \left\{egin{array}{cc} 1 & i=q_1 \ 0 & ext{otherwise} \end{array}
ight.$$

$$ar{a}_{ij} = rac{n_{ij}}{\sum_{j=1}^N n_{ij}}$$

$$\bar{b}_j(k) = \frac{m_{jk}}{\sum_{k=1}^M m_{jk}}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 Review
 ML
 Baum-Welch
 Gaussians
 Summary

 Maximum Likelihood Training with Known State Sequence

Using the Lagrange multiplier method, we can show that the maximum likelihood parameters for the HMM are:

Initial State Probabilities:

 $\bar{\pi}_i = \frac{\# \text{ state sequences that start with } q_1 = i}{\# \text{ state sequences in training data}}$

Iransition Probabilities:

$$\bar{a}_{ij} = \frac{\# \text{ frames in which } q_{t-1} = i, q_t = j}{\# \text{ frames in which } q_{t-1} = i}$$

Observation Probabilities:

$$ar{b}_j(k) = rac{\# ext{ frames in which } q_t = j, k_t = k}{\# ext{ frames in which } q_t = j}$$

Review	ML	Baum-Welch	Gaussians	Summary
0000000	00000000000	●○○○○○○○○○	00000	000
Outline				

- 1 Review: Hidden Markov Models
- 2 Maximum-Likelihood Training of an HMM
- 3 Baum-Welch Re-Estimation
 - 4 Gaussian Observation Probabilities

When the true state sequence is unknown, then we can't maximize the likelihood $p(O, Q|\bar{\lambda})$ directly. Instead, we maximize Baum's auxilary function:

$$Q(\lambda,ar{\lambda}) = \sum_{Q} p(Q|O,\lambda) \ln p(O,Q|ar{\lambda})$$

This method has two key advantages:

- The maximizer of $Q(\lambda, \overline{\lambda})$ can be computed analytically.
- Baum proved that, regardless of the value of λ ,

$$\max_{ar{\lambda}} Q(\lambda,ar{\lambda}) \quad \Rightarrow \quad P(\mathcal{O}|ar{\lambda}) \geq P(\mathcal{O}|\lambda)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Baum-Welch Re-Estimation: Overview

- Iterate:

• Find
$$\bar{\lambda} = \operatorname{argmax} Q(\lambda, \bar{\lambda})$$

• Set $\lambda = \bar{\lambda}$

Stop when $P(O|\lambda)$ stops (quickly) increasing.

 Review
 ML
 Baum-Welch
 Gaussians
 Summary

 Calculating the Baum Auxiliary
 Summary
 Summary
 Summary

The Baum auxiliary is:

$$Q(\lambda, \bar{\lambda}) = \sum_{Q} p(Q|O, \lambda) \ln p(O, Q|\bar{\lambda})$$

= $\sum_{i=1}^{N} p(q_1 = i|O, \lambda) \ln \bar{\pi}_i$
+ $\sum_{t=1}^{T-1} \sum_{i=1}^{N} \sum_{j=1}^{N} p(q_t = i, q_{t+1} = j|O, \lambda) \ln \bar{a}_{ij}$
+ $\sum_{t=1}^{T} \sum_{i=1}^{N} \sum_{k=1}^{M} p(q_t = i, o_t = k|O, \lambda) \ln \bar{b}_j(k)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Now we need to find those three probabilities.

 Review
 ML
 Baum-Welch
 Gaussians
 Summary

 Colloulating the Baum Auxiliary
 Summary
 Summary
 Summary
 Summary

First: $p(q_1 = i | O, \lambda)$. We already know this one! It's

 $p(q_1 = i | O, \lambda) = \gamma_1(i)$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Second: $p(q_t = i, q_{t+1} = i | O, \lambda)$. This one is a two-step state posterior, calculated similar to γ . Rabiner uses the letter ξ for this probability:

$$p(q_t = i, q_{t+1} = j | O, \lambda) = \frac{p(q_t = i, q_{t+1} = j, O | \lambda)}{P(O | \lambda)}$$
$$= \frac{\alpha_t(i) a_{ij} b_j(\vec{o}_{t+1}) \beta_{t+1}(j)}{P(O | \lambda)}$$
$$\equiv \xi_t(i, j)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Finally: $p(q_t = i, o_t = k | O, \lambda)$.

$$p(q_t = i, o_t = k | O, \lambda) = \begin{cases} p(q_t = i | O, \lambda) & o_t = k \\ 0 & \text{otherwise} \end{cases}$$
$$= \begin{cases} \gamma_t(i) & o_t = k \\ 0 & \text{otherwise} \end{cases}$$

 Review
 ML
 Baum-Welch
 Gaussians
 Summary

 Cocococo
 Calculating the Baum Auxiliary
 Summary
 Summary

Putting it all together,

$$Q(\lambda, \bar{\lambda}) = \sum_{Q} p(Q|O, \lambda) \ln p(O, Q|\bar{\lambda})$$
$$= \sum_{i=1}^{N} \gamma_1(i) \ln \bar{\pi}_i$$
$$+ \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{t=1}^{T-1} \xi_t(i, j) \ln \bar{a}_{ij}$$
$$+ \sum_{i=1}^{N} \sum_{k=1}^{M} \sum_{t:o_t=k} \gamma_t(i) \ln \bar{b}_j(k)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Now let's create a Lagrangian:

$$\mathcal{J}(\lambda) = \sum_{i=1}^{N} \gamma_{1}(i) \ln \bar{\pi}_{i} + \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{t=1}^{T-1} \xi_{t}(i,j) \ln \bar{a}_{ij} + \sum_{i=1}^{N} \sum_{k=1}^{M} \sum_{t:o_{t}=k} \gamma_{t}(i) \ln \bar{b}_{k}$$
$$+ \kappa \left(1 - \sum_{i=1}^{N} \bar{\pi}_{i}\right) + \sum_{i=1}^{N} \mu_{i} \left(1 - \sum_{j=1}^{N} \bar{a}_{ij}\right) + \sum_{i=1}^{N} \nu_{i} \left(1 - \sum_{k=1}^{M} \bar{b}_{j}(k)\right)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

... differentiate it, and set the derivative equal to zero.

Here's the result of that differentiation:

1 Initial State Probabilities:

$$\bar{\pi}_i = \frac{\gamma_1(i)}{\sum_{i'=1}^N \gamma_1(i')}$$

2 Transition Probabilities:

$$\bar{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{j'=1}^{N} \sum_{t=1}^{T-1} \xi_t(i,j')}$$

3 Observation Probabilities:

$$\bar{b}_j(k) = \frac{\sum_{t:o_t=k} \gamma_t(i)}{\sum_{i'=1}^N \sum_{t:o_t=k} \gamma_t(i')}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Review Baum-Welch 00000000000

Maximizing the Baum Auxiliary

If you look closely at the equations on the previous slide, you will see that they are just like the known-state case, except that instead of counting **known** state frequencies, we now compute expected state frequencies!

Initial State Probabilities:

$$\bar{\pi}_i = \frac{E\left[\# \text{ state sequences that start with } q_1 = i\right]}{\# \text{ state sequences in training data}}$$

O Transition Probabilities:

$$\bar{a}_{ij} = \frac{E\left[\# \text{ frames in which } q_{t-1} = i, q_t = j\right]}{E\left[\# \text{ frames in which } q_{t-1} = i\right]}$$

Observation Probabilities:

$$\bar{b}_j(k) = \frac{E\left[\# \text{ frames in which } q_t = j, o_t = k\right]}{E\left[\# \text{ frames in which } q_t = j\right]}$$

Review	ML	Baum-Welch	Gaussians	Summary
0000000	00000000000	0000000000	●○○○○	000
Outline				

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- 1 Review: Hidden Markov Models
- 2 Maximum-Likelihood Training of an HMM
- 3 Baum-Welch Re-Estimation
- Gaussian Observation Probabilities

5 Summary

Review ML Baum-Welch Gaussians Summary 000 Baum-Welch with Gaussian Probabilities

The requirement that we vector-quantize the observations is a problem. It means that we can't model the observations very precisely.

It would be better if we could model the observation likelihood, $b_j(\vec{o})$, as a probability density in the space $\vec{o} \in \Re^D$. One way is to use a parameterized function that is guaranteed to be a properly normalized pdf. For example, a Gaussian:

$$b_i(\vec{o}) = \mathcal{N}(\vec{o}; \vec{\mu}_i, \Sigma_i)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 Review
 ML
 Baum-Welch
 Gaussians
 Summary

 Color
 Calculating the Baum Auxiliary
 Summary
 Summary

The Baum auxiliary is now:

$$Q(\lambda, \bar{\lambda}) = \sum_{Q} p(Q|O, \lambda) \ln p(O, Q|\bar{\lambda})$$
$$= \sum_{i=1}^{N} \gamma_1(i) \ln \bar{\pi}_i$$
$$+ \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{t=1}^{T-1} \xi_t(i, j) \ln \bar{a}_{ij}$$
$$+ \sum_{i=1}^{N} \sum_{t=1}^{T} \gamma_t(i) \ln \mathcal{N}(\vec{o}_t; \vec{\mu}_i, \Sigma_i)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

When we maximize the Baum auxiliary, we get:

$$\bar{\mu}_i = \frac{\sum_{t=1}^T \gamma_t(i)\vec{o}_t}{\sum_{t=1}^T \gamma_t(i)}$$

$$\bar{\Sigma}_i = \frac{\sum_{t=1}^T \gamma_t(i)(\vec{o}_t - \vec{\mu}_i)(\vec{o}_t - \vec{\mu}_i)^T}{\sum_{t=1}^T \gamma_t(i)}$$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

 Review
 ML
 Baum-Welch
 Gaussians
 Summary

 00000000
 00000000000
 00000
 0000
 0000

 Maximizing the Baum Auxiliary
 Summary
 0000

Notice the similarity to what we would do if the states were known:

- Known states: μ_i is the sample mean of the observations, Σ_i is their sample variance.
- Known states:
 - μ_i is the weighted average, where the weights are $\gamma_t(i)$.
 - Σ_i is the weighted sample variance, where the weights are $\gamma_t(i)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Review	ML	Baum-Welch	Gaussians	Summary
0000000	00000000000	0000000000	00000	●○○
Outline				

- 1 Review: Hidden Markov Models
- 2 Maximum-Likelihood Training of an HMM
- 3 Baum-Welch Re-Estimation
 - 4 Gaussian Observation Probabilities

Initial State Probabilities:

$$\bar{\pi}_i = \frac{\sum_{sequences} \gamma_1(i)}{\# \text{ sequences}}$$

2 Transition Probabilities:

$$\bar{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{j=1}^{N} \sum_{t=1}^{T-1} \xi_t(i,j)}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 Review
 ML
 Baum-Welch
 Gaussians
 Summary

 OOOOOOO
 OooOoo
 OooOoo
 Ooo
 Oo

 The Baum-Welch Algorithm: Observation Probabilities

1 Discrete Observation Probabilities:

$$\bar{b}_j(k) = \frac{\sum_{t:\vec{o}_t=k} \gamma_t(j)}{\sum_t \gamma_t(j)}$$

Q Gaussian Observation PDFs:

$$\bar{\mu}_i = \frac{\sum_{t=1}^T \gamma_t(i) \vec{o}_t}{\sum_{t=1}^T \gamma_t(i)}$$
$$\bar{\Sigma}_i = \frac{\sum_{t=1}^T \gamma_t(i) (\vec{o}_t - \vec{\mu}_i) (\vec{o}_t - \vec{\mu}_i)^T}{\sum_{t=1}^T \gamma_t(i)}$$

▲□▶ ▲圖▶ ▲園▶ ▲園▶ 三国 - 釣A@