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Notation: Inputs and Outputs

@ The observation sequence is a sequence of short-time
spectra, or other observation vectors, O = [0, ..., OT].

@ The model parameters, ), are a set of numbers that
describe the probability of observing O, given that word y was
produced.

o Isolated word recognition is the problem of figuring out
which word has the maximum probability, i.e., finding

argmax p(O|A,)p(y)
y
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Review: Automatic Speech Recognition

Remember that Velichko & Zagoruyko broke down the problem of
ASR into two key subproblems:

@ Variable acoustics: V&Z solved this problem by calculating
Euclidean distance using a perceptually-motivated feature
vector.

e Variable duration: V&Z solved this problem using dynamic
time warping.
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Hidden Markov Model

The hidden Markov model (HMM) solves the same problems, in a
more scalable fashion:

@ Variable acoustics: Instead of storing training examples, the
HMM stores a model, ), specifying the probability density
function of the short-time spectrum, &;, given the index of the
speech sound being produced at that instant, g;:

P(5t‘CIt» )\y)

@ Variable duration: The HMM solves this problem by
imagining that each word is composed of a sequence of
speech sounds, or “states:” Q =[qi,...,qr], and that the
likelihood of the word is

p(0|\,) Zp (Q,0|)\))
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HMM: Key Concepts

An HMM is a “generative model,” meaning that it models the
joint probability p(@Q, O|\) using a model of the way in which
those data might have been generated. An HMM pretends the
following generative process:

@ Start in state g; = i with pmf m; = p(q1 = /).
@ Generate an observation, &, with pdf b;(0) = p(d]q: = i).
© Transition to a new state, g;11 = j, according to pmf
aj = p(qer1 = jlg: = ).
© Repeat.

The model parameters that define any particular word are thus

Ay = {I,A, B}
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HMM: Finite State Diagram

@ Start in state g; =/, forsome 1 </ < N.
@ Generate an observation, 0, with pdf b;(0).
© Transition to a new state, g:1 = j, according to pmf a;;.

Q Repeat steps #2 and #3, T times each.
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Notation: Model Parameters

Solving an HMM is possible if you carefully keep track of
notation. Here's standard notation for the parameters:

e 7; = p(q1 = i) is called the initial state probability. Let N
be the number of different states, so that 1 </ < N.

e ajj = p(qr = j|qe—1 = i) is called the transition probability,
1<i,j<N

e bj(06) = p(0: = 0|q: = j) is called the observation
probability. It is usually estimated by a neural network,
though Gaussians, GMMs, and even lookup tables are possible.

@ )\ is the complete set of model parameters, including all the
m;i's and aj;'s, and the Gaussian, GMM, or neural net
parameters necessary to compute bj(0).
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The Three Problems for an HMM

© Recognition: Given two different HMMs, A1 and ), and an
observation sequence O. Which HMM was more likely to have
produced O? In other words, is p(O|A1) > p(O|A2)?

@ Segmentation: What is p(q: = i|O, \)?

@ Training: Given an initial HMM ), and an observation
sequence O, can we find X such that p(O|\) > p(O|\)?
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© Recognition: the Forward Algorithm
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The HMM Recognition Problem

° Given

=[61,...,07] and
{ﬂ—nalja ( )VIaj}

what is p(O])\).

@ Let's solve a simpler problem first:

o Given
e O=]o,...,07] and
o Q=g ...,qT]and
e A= {7‘1’,,8”, i (0)Vi, j},

what is p(O, Q|\)?
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Joint Probability of State Sequence and Observation

Sequence

The joint probability of the state sequence and the observation
sequence is calculated iteratively, from beginning to end:

@ The probability that g1 = q1 is g, .
e Given qi, the probability of 07 is bg, (01).
e Given g, the probability of g2 is ag,q,.

@ ...and soon...
-

P(Q, OIX) = 74, b4, (1) | [ aq:-1q:00:(57)

t=2
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Probability of the Observation Sequence

The probability of the observation sequence, alone, is somewhat
harder, because we have to solve this sum:

p(O|)) = Zp (Q,0[N)

Z Z (Q.0N)

qr=1 qi=1

On the face of it, this calculation seems to have complexity
@) {NT}. So for a very small 100-frame utterance, with only 10
states, we have a complexity of O {10'%°} =one google.
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The Forward Algorithm

The solution is to use a kind of dynamic programming algorithm,
called “the forward algorithm.” The forward probability is defined
as follows:

ar(i) = p(d1, ..., 0 qr = i|A)

Obviously, if we can find a.(i) for all i and all ¢, we will have
solved the recognition problem, because

p(ON) = p(6i, ..., 57|A)

N
> p(6r,..., 81 qr = i|\)
1

1

(i)

I
.sz

Il
._.
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The Forward Algorithm

So, working with the definition a(i) = p(01,. .., 0 qr = i|\),
let's see how we can actually calculate a(7).

Q Initialize:

a1(i) = p(q1 = i,01|7)
= p(q1 = i]A)p(dilq = i, A)
= 7T,'b,'(51)
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The Forward Algorithm

Definition: ay(i) = p(01, ..., O, qr = i|\).
@ Initialize:

Q lterate:
Ckt‘(.j) = p(017 cee 61‘7 at :J’A)

N
=> p(61,...,6t-1,qe-1 = i)p(qe = jlae—1 = I)p(&tlqe = Jj)
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The Forward Algorithm

So, working with the definition a(i) = p(01,. .., 0 qr = i|\),
let's see how we can actually calculate a(7).
O Initialize:
Oél(i) = 7T,'b,'(5;1)7 1<i<N

Q lterate:
N
ar(j) = ara(iagbi(6r), 1<j<N, 2<t<T
i=1

© Terminate:
N

p(OIN) =Y ar(i)

i=1
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Visualizing the Forward Algorithm using a Trellis

One way to think about the forward algorithm is by way of a
trellis. A trellis is a matrix in which each time step is a column,
and each row shows a different state. For example, here's a trellis
with N = 4 states, and T =5 frames:

00K
01 KN
10K

11]

Public domain image by Qef, 2009
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Visualizing the Forward Algorithm using a Trellis

00K 00
01 K N AOL KN

10K 10K/ 410

T T

Using a trellis, the initialize step computes probabilities for the
first column of the trellis:

a1(i) =mibi(61), 1<i<N
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Visualizing the Forward Algorithm using a Trellis

00k——{00 00
0K\ _AD1 01
10K/ 10 {10]

TSI T I

The iterate step then computes the probabilities in the t™ column
by adding up the probabilities in the (t — 1)t column, each
multiplied by the corresponding transition probability:

N
ar(j) =D ara(agbi(é), 1<j<N, 2<t<T
=1
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Visualizing the Forward Algorithm using a Trellis

00k 00
01K\ _A0T
10k~ /910

[ AN Y ANy

The terminate step then computes the likelihood of the model by
adding the probabilities in the last column:

p(O|N) = Zar
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The Forward Algorithm: Computational Complexity

Most of the computational complexity is in this step:

o lterate:

N
ar(j) =) o 1(i)agbi(d), 1<ij<N, 2<t<T
i=1
Its complexity is:
@ Foreachof T — 1 timesteps, 2<t<T,...
e we need to calculate N different alpha-variables, a.(j), for
1<j<N,...
@ each of which requires a summation with N terms.

So the total complexity is O { TNZ}. For example, with N =10
and T = 100, the complexity is only TN? = 10,000 multiplies
(much, much less than NT11)
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© Segmentation: the Backward Algorithm
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The Segmentation Problem

There are different ways to define the segmentation problem. Let's
define it this way:
@ We want to find the most likely state, g; = i, at time t,. ..
@ given knowledge of the entire sequence O = [0, ..., 07|, not
just the current observation. So for example, we don't want
to recognize state i at time t if the surrounding observations,

0;r_1 and Oy11, make it obvious that this choice is impossible.
Also,. ..

@ given knowledge of the HMM that produced this sequence, .

In other words, we want to find the state posterior probability,
p(g: = i|O, \). Let's define some more notation for the state
posterior probability, let's call it

Ye(i) = p(q: = i|O, A)
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Use Bayes' Rule

Suppose we already knew the joint probability, p(O, g: = i|)\).
Then we could find the state posterior using Bayes' rule:

p(O, g: = i|)\)

(i) = p(ge = i|O,\) =
ve(i) = p(qe = i|O, A) S p(0sar =N
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Use the Forward Algorithm

Let's expand this:

p(0,q: = ilA\) = p(q: = i,01,...,07|A)

We already know about half of that:
ai(i) = p(ge = i,01,...,0:\). We're only missing this part:

p(o7 at = l‘)\) = Oét(i)P(at+l> sy 6T|qt = Ia)‘)

Again, let's try the trick of “solve the problem by inventing new
notation.” Let's define

Be(i) = p(Ot+1,- .-, 07[qr =i, M)
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The Backward Algorithm

Now let's use the definition 5:(i) = p(O¢41,...,07|q: =i, ), and
see how we can compute that.
Q Initialize:
Br(i)=1, 1<i<N

This might not seem immediately obvious, but think about it.
Given that there are no more 6 vectors after time T, what is

the probability that there are no more G vectors after time T7?
Well, 1, obviously.
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The Backward Algorithm

Now let's use the definition 5:(i) = p(0t+1,...,07|q: = i, A), and
see how we can compute that.

@ Initialize:

Q lterate:

Be(i)

p(at-f—la .- '75T’qt = ’7)\)

N
ZP(qu = jlge = i)p(Ce+1|qe+1 = j)P(Ot42; - - -, OT[qe+1 = j)
j=1

-
Il

I
.MZ

ajjbj(0t+1)Be+1())

.
Il
—



Segmentation
00000000

The Backward Algorithm

Now let's use the definition 5:(i) = p(0t+1,...,07|q: =i, A), and
see how we can compute that.

@ Initialize:
Q lterate:

)= agbj(641)Besa(j), 1<i<N, 1<t<T-1
Jj=1

© Terminate:

O’/\ ZW/ i(01 /81
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The Backward Algorithm: Computational Complexity

Most of the computational complexity is in this step:
o lterate:

N
Be(i) =D ajbj(S1)Brsa(j), 1<i<N, 2<t<T
j=1
Its complexity is:
@ Foreachof T — 1 timesteps, 1<t<T—1,...

@ we need to calculate N different beta-variables, 3¢(i), for
1<i<N,...

@ each of which requires a summation with N terms.
So the total complexity is O { TN?}.
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Use Bayes' Rule

The segmentation probability is then

Yeli) = Np(qut = i|))
Zk:l p(O, q: = k|\)
_ p(01,. .., 0t qe = i|A)p(Cet1, ..., 0T|qe = i, )
SN p(B1, ..., 8, qe = kIN)P(Grs1, - - -, OT|qe = K, A)
_ (i) Be (i)
D=1 e(K)Be(k)
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Segmentation: The Backward Algorithm

In summary, we now have three new probabilities, all of which can
be computed in O { TN?} time:

© The Backward Probability:

Be(i) = p(Oty1,...,0T]qe = i, A)
@ The State Posterior:

(i) Be (i)

(i) = t:iO,)\ =
) =plae =108 = S5

© The Segment Posterior:

gt(’a./) = p(qt = ia qi+1 :J|O’>‘)
_ at(i)abj(0t+1)Bev1())
Skt S ae(k)akebe(Se11)Beya(£)
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@ Segmentation: the Viterbi Algorithm
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Segmentation Problem: A Different Version

@ Using the forward-backward algorithm, we can find

p(g: = i|O, A).
@ Suppose we want to know all of the states, Q@ = [q1,...,9T].
Notice that
-
p(ar, -, qr|0,A) # [ ] p(a:|O, A)
t=1

For example, the maximizer of the RHS might be an
impossible state sequence: q; = i and gyy+1 = j might be
individually likely, but p(g:+1 = j|g: = i) might be 0!

@ In order to find p(q1,...,q7|0O,\), we need a different
algorithm.
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Viterbi Algorithm

Since the method of “solve a problem by defining new variables” is
working so well for us, let's try it again. Define

51‘(’)E max p(qlaala"'vqt:i)6t|>\)
q1,--,qt—1

ve(i) = argmax _max p(q1,8,...,q = i, 0| \)
qr—1 95 qe—2

The second term, (i), is called a back-pointer. It tells us:
@ If you find yourself in state i at time t,

@ ...what was the most likely previuos state, g;_17
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The Viterbi Algorithm

So, working with the definition
0:(i) = maxg,,....q,, P(q1,01,...,q: = i,0¢|A), let's see how we
can actually calculate d¢(i).

@ Initialize:

1(7) = p(qr = i, 01|})
= p(qr = i[A)p(o1]qL =i, A)
= m;b;(01)

(i) = undefined
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The Viterbi Algorithm

3¢(7) = maxq,,...q, P(q1,01, ..., G = i, 0¢|\)
@ Initialize:
01(i) =mibi(61), 1<i<N

Q Iterate:

5t(j):max< max (p(q1,01,.-.,qt-1,0:-1|\) X
gt—t \91;---»qt—1

p(qr = jlgi—1 = 1)p(Gt|q: = J)))

N . R
= TT‘:alx 5t—1(’)3ijbj(0t)

. N . .
Pi(j) = argmlax dt—1(i)ajjbj(0r)
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The Viterbi Algorithm

5t(l) = MaXgq,...,qi—1 P(CIL 617 ces Qe =1, 5\1.“‘)\)
@ Initialize:
(51()—771 1(01)7 1<i<N

Q lterate:
5:(j) = max s 1(1)asby(6), 1<j<N, 2<e<T

Pe(j) = argmaxét 1(Najbj(o), 1<j<N,2<t<T

© Terminate: N
max P(O, Q) = maxdr(i)
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Back-Tracing

Now that we have maxg p(O, Q|\), now we need to find

lg7, ..., q7] = arggwaXP(O, Q[A)

The algorithm is called “back-tracing.” We start by finding the
most likely final state:

qT = argmax d7(i)
i

...and then we just follow the backpointers from there:

Gi_1=vUe(qf), T>t>2
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Visualizing the Viterbi Algorithm using a Trellis

00K 00k
01K N ALK
10K/ 10K/ ™10]
11F----9{11]

___fi::@

Using a trellis, the initialize step computes probabilities for the
first column of the trellis:

51(i) = mibi(81), 1<i<N
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Visualizing the Viterbi Algorithm using a Trellis

00k——{00 00
0K\ _A0T 01
10k {10 {10]

T R Fi) ~{11]

The iterate step then computes the probability of the best path
to each state in the t'" column:

5.(j) = m“élxat_l(i)a,-jbj(at), 1<j<N, 2<t<T
=
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Visualizing the Viterbi Algorithm using a Trellis

00k 00
0K\ _A01
10k~ /910

Tl T

Back-tracing then finds the most likely final state, and traces
backward, from there, to find the most likely sequence over all:

qT = argmax d7(i)
;

qr—1=Ye(q;), T>t>2
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Hidden Markov Model

@ Start in state g; = i with pmf 7;.

@ Generate an observation, 0, with pdf b;(0).

© Transition to a new state, g:1 = j, according to pmf a;;.
Q Repeat.
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The Forward Algorithm

Definition: a4(i) = p(0o1,. .., 0, g = i|\). Computation:
O Initialize:
al(i) = 71','b,'(51), 1 S i S N

Q lterate:

aelj) = Zatfl(")aijbj(at), 1<j<N,2<t<T

© Terminate:

p(O|)) = ZQT
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The Backward Algorithm

Definition: S:(i) = p(0¢+1,--.,07|9: = i, A). Computation:
@ Initialize:
Br(i)=1, 1<i<N

Q lterate:
N
Be(i) = ajbj(0r41)Besa(f), 1<i<N, 1<t<T—1
j=1
© Terminate:

N
p(O1N) =Y mibi(61)Ba(i)
i=1
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The Viterbi Algorithm

@ Initialize:
01(i) =mibi(61), 1<i<N

Q lterate:
5:(j) = mglxat,l(/)a,-jbj(at), 1<j<N, 2<t<T

be(j) = argmaxd,_1(i)agb(6:), 1<j <N, 2<t<T
i=1
© Back-trace:

qT = argmax d7(f)
i

g1 =ve(q;), T>t>2
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