## Lecture 14: A tutorial on hidden Markov models and selected applications in speech recognition, part 1

## Mark Hasegawa-Johnson All content CC-BY 4.0 unless otherwise specified.

ECE 537, Fall 2022
(1) Hidden Markov Models
(2) Recognition: the Forward Algorithm
(3) Segmentation: the Backward Algorithm
(4) Segmentation: the Viterbi Algorithm
(5) Summary

## Outline

(1) Hidden Markov Models
(2) Recognition: the Forward Algorithm
(3) Segmentation: the Backward Algorithm

4 Segmentation: the Viterbi Algorithm
(5) Summary

## Notation: Inputs and Outputs

- The observation sequence is a sequence of short-time spectra, or other observation vectors, $O=\left[\vec{o}_{1}, \ldots, \vec{o}_{T}\right]$.
- The model parameters, $\lambda_{y}$, are a set of numbers that describe the probability of observing $O$, given that word $y$ was produced.
- Isolated word recognition is the problem of figuring out which word has the maximum probability, i.e., finding

$$
\underset{y}{\operatorname{argmax}} p\left(O \mid \lambda_{y}\right) p(y)
$$

## Review: Automatic Speech Recognition

Remember that Velichko \& Zagoruyko broke down the problem of ASR into two key subproblems:

- Variable acoustics: V\&Z solved this problem by calculating Euclidean distance using a perceptually-motivated feature vector.
- Variable duration: V\&Z solved this problem using dynamic time warping.


## Hidden Markov Model

The hidden Markov model (HMM) solves the same problems, in a more scalable fashion:

- Variable acoustics: Instead of storing training examples, the HMM stores a model, $\lambda_{y}$, specifying the probability density function of the short-time spectrum, $\vec{o}_{t}$, given the index of the speech sound being produced at that instant, $q_{t}$ :

$$
p\left(\vec{o}_{t} \mid q_{t}, \lambda_{y}\right)
$$

- Variable duration: The HMM solves this problem by imagining that each word is composed of a sequence of speech sounds, or "states:" $Q=\left[q_{1}, \ldots, q_{T}\right]$, and that the likelihood of the word is

$$
p\left(O \mid \lambda_{y}\right)=\sum_{Q} p\left(Q, O \mid \lambda_{y}\right)
$$

## HMM: Key Concepts

An HMM is a "generative model," meaning that it models the joint probability $p(Q, O \mid \lambda)$ using a model of the way in which those data might have been generated. An HMM pretends the following generative process:
(1) Start in state $q_{t}=i$ with pmf $\pi_{i}=p\left(q_{1}=i\right)$.
(2) Generate an observation, $\vec{o}$, with pdf $b_{i}(\vec{o})=p\left(\vec{o} \mid q_{t}=i\right)$.
(3) Transition to a new state, $q_{t+1}=j$, according to pmf

$$
a_{i j}=p\left(q_{t+1}=j \mid q_{t}=i\right)
$$

(9) Repeat.

The model parameters that define any particular word are thus

$$
\lambda_{y}=\{\Pi, A, B\}
$$

## HMM: Finite State Diagram


(1) Start in state $q_{t}=i$, for some $1 \leq i \leq N$.
(2) Generate an observation, $\vec{o}$, with pdf $b_{i}(\vec{o})$.
(3) Transition to a new state, $q_{t+1}=j$, according to pmf $a_{i j}$.
(9) Repeat steps $\# 2$ and $\# 3, T$ times each.

## Notation: Model Parameters

Solving an HMM is possible if you carefully keep track of notation. Here's standard notation for the parameters:

- $\pi_{i}=p\left(q_{1}=i\right)$ is called the initial state probability. Let $N$ be the number of different states, so that $1 \leq i \leq N$.
- $a_{i j}=p\left(q_{t}=j \mid q_{t-1}=i\right)$ is called the transition probability, $1 \leq i, j \leq N$.
- $b_{j}(\vec{o})=p\left(\vec{o}_{t}=\vec{o} \mid q_{t}=j\right)$ is called the observation probability. It is usually estimated by a neural network, though Gaussians, GMMs, and even lookup tables are possible.
- $\lambda$ is the complete set of model parameters, including all the $\pi_{i}$ 's and $a_{i j}$ 's, and the Gaussian, GMM, or neural net parameters necessary to compute $b_{j}(\vec{o})$.


## The Three Problems for an HMM

(1) Recognition: Given two different HMMs, $\lambda_{1}$ and $\lambda_{2}$, and an observation sequence $O$. Which HMM was more likely to have produced $O$ ? In other words, is $p\left(O \mid \lambda_{1}\right)>p\left(O \mid \lambda_{2}\right)$ ?
(2) Segmentation: What is $p\left(q_{t}=i \mid O, \lambda\right)$ ?
(3) Training: Given an initial HMM $\lambda$, and an observation sequence $O$, can we find $\bar{\lambda}$ such that $p(O \mid \bar{\lambda})>p(O \mid \lambda)$ ?

## Outline

(1) Hidden Markov Models
(2) Recognition: the Forward Algorithm
(3) Segmentation: the Backward Algorithm

4 Segmentation: the Viterbi Algorithm
(5) Summary

## The HMM Recognition Problem

- Given
- $O=\left[\vec{o}_{1}, \ldots, \vec{o}_{T}\right]$ and
- $\lambda=\left\{\pi_{i}, a_{i j}, b_{j}(\vec{o}) \forall i, j\right\}$,
what is $p(O \mid \lambda)$ ?
- Let's solve a simpler problem first:
- Given
- $O=\left[\vec{o}_{1}, \ldots, \vec{o}_{T}\right]$ and
- $Q=\left[q_{1}, \ldots, q_{T}\right]$ and
- $\lambda=\left\{\pi_{i}, a_{i j}, b_{j}(\vec{o}) \forall i, j\right\}$,
what is $p(O, Q \mid \lambda)$ ?


## Joint Probability of State Sequence and Observation

 SequenceThe joint probability of the state sequence and the observation sequence is calculated iteratively, from beginning to end:

- The probability that $q_{1}=q_{1}$ is $\pi_{q_{1}}$.
- Given $q_{1}$, the probability of $\overrightarrow{o_{1}}$ is $b_{q_{1}}\left(\vec{o}_{1}\right)$.
- Given $q_{1}$, the probability of $q_{2}$ is $a_{q_{1} q_{2}}$.
- ... and so on...

$$
p(Q, O \mid \lambda)=\pi_{q_{1}} b_{q_{1}}\left(\vec{o}_{1}\right) \prod_{t=2}^{T} a_{q_{t-1} q_{t}} b_{q_{t}}\left(\vec{o}_{t}\right)
$$

## Probability of the Observation Sequence

The probability of the observation sequence, alone, is somewhat harder, because we have to solve this sum:

$$
\begin{aligned}
p(O \mid \lambda) & =\sum_{Q} p(Q, O \mid \lambda) \\
& =\sum_{q_{T}=1}^{N} \cdots \sum_{q_{1}=1}^{N} p(Q, O \mid \lambda)
\end{aligned}
$$

On the face of it, this calculation seems to have complexity $\mathcal{O}\left\{N^{T}\right\}$. So for a very small 100-frame utterance, with only 10 states, we have a complexity of $\mathcal{O}\left\{10^{100}\right\}=$ one google.

## The Forward Algorithm

The solution is to use a kind of dynamic programming algorithm, called "the forward algorithm." The forward probability is defined as follows:

$$
\alpha_{t}(i) \equiv p\left(\vec{o}_{1}, \ldots, \vec{o}_{t}, q_{t}=i \mid \lambda\right)
$$

Obviously, if we can find $\alpha_{t}(i)$ for all $i$ and all $t$, we will have solved the recognition problem, because

$$
\begin{aligned}
p(O \mid \lambda) & =p\left(\vec{o}_{1}, \ldots, \vec{o}_{T} \mid \lambda\right) \\
& =\sum_{i=1}^{N} p\left(\vec{o}_{1}, \ldots, \vec{o}_{T}, q_{T}=i \mid \lambda\right) \\
& =\sum_{i=1}^{N} \alpha_{T}(i)
\end{aligned}
$$

## The Forward Algorithm

So, working with the definition $\alpha_{t}(i) \equiv p\left(\vec{o}_{1}, \ldots, \vec{o}_{t}, q_{t}=i \mid \lambda\right)$, let's see how we can actually calculate $\alpha_{t}(i)$.
(1) Initialize:

$$
\begin{aligned}
\alpha_{1}(i) & =p\left(q_{1}=i, \vec{o}_{1} \mid \lambda\right) \\
& =p\left(q_{1}=i \mid \lambda\right) p\left(\vec{o}_{1} \mid q_{1}=i, \lambda\right) \\
& =\pi_{i} b_{i}\left(\vec{o}_{1}\right)
\end{aligned}
$$

## The Forward Algorithm

Definition: $\alpha_{t}(i) \equiv p\left(\vec{o}_{1}, \ldots, \vec{o}_{t}, q_{t}=i \mid \lambda\right)$.
(1) Initialize:

$$
\alpha_{1}(i)=\pi_{i} b_{i}\left(\vec{o}_{1}\right), \quad 1 \leq i \leq N
$$

(2) Iterate:

$$
\begin{aligned}
\alpha_{t}(j) & =p\left(\vec{o}_{1}, \ldots, \vec{o}_{t}, q_{t}=j \mid \lambda\right) \\
& =\sum_{i=1}^{N} p\left(\vec{o}_{1}, \ldots, \vec{o}_{t-1}, q_{t-1}=i\right) p\left(q_{t}=j \mid q_{t-1}=i\right) p\left(\vec{o}_{t} \mid q_{t}=j\right) \\
& =\sum_{i=1}^{N} \alpha_{t-1}(i) a_{i j} b_{j}\left(\vec{o}_{t}\right)
\end{aligned}
$$

## The Forward Algorithm

So, working with the definition $\alpha_{t}(i) \equiv p\left(\vec{o}_{1}, \ldots, \vec{o}_{t}, q_{t}=i \mid \lambda\right)$, let's see how we can actually calculate $\alpha_{t}(i)$.
(1) Initialize:

$$
\alpha_{1}(i)=\pi_{i} b_{i}\left(\vec{o}_{1}\right), \quad 1 \leq i \leq N
$$

(2) Iterate:

$$
\alpha_{t}(j)=\sum_{i=1}^{N} \alpha_{t-1}(i) a_{i j} b_{j}\left(\vec{o}_{t}\right), \quad 1 \leq j \leq N, 2 \leq t \leq T
$$

(3) Terminate:

$$
p(O \mid \lambda)=\sum_{i=1}^{N} \alpha_{T}(i)
$$

## Visualizing the Forward Algorithm using a Trellis

One way to think about the forward algorithm is by way of a trellis. A trellis is a matrix in which each time step is a column, and each row shows a different state. For example, here's a trellis with $N=4$ states, and $T=5$ frames:


Public domain image by Qef, 2009

## Visualizing the Forward Algorithm using a Trellis



Using a trellis, the initialize step computes probabilities for the first column of the trellis:

$$
\alpha_{1}(i)=\pi_{i} b_{i}\left(\vec{o}_{1}\right), \quad 1 \leq i \leq N
$$

## Visualizing the Forward Algorithm using a Trellis



The iterate step then computes the probabilities in the $t^{\text {th }}$ column by adding up the probabilities in the $(t-1)^{\text {st }}$ column, each multiplied by the corresponding transition probability:

$$
\alpha_{t}(j)=\sum_{i=1}^{N} \alpha_{t-1}(i) a_{i j} b_{j}\left(\vec{o}_{t}\right), \quad 1 \leq j \leq N, 2 \leq t \leq T
$$

## Visualizing the Forward Algorithm using a Trellis



The terminate step then computes the likelihood of the model by adding the probabilities in the last column:

$$
p(O \mid \lambda)=\sum_{i=1}^{N} \alpha_{T}(i)
$$

## The Forward Algorithm: Computational Complexity

Most of the computational complexity is in this step:

- Iterate:

$$
\alpha_{t}(j)=\sum_{i=1}^{N} \alpha_{t-1}(i) a_{i j} b_{j}\left(\vec{o}_{t}\right), \quad 1 \leq i, j \leq N, 2 \leq t \leq T
$$

Its complexity is:

- For each of $T-1$ time steps, $2 \leq t \leq T, \ldots$
- we need to calculate $N$ different alpha-variables, $\alpha_{t}(j)$, for $1 \leq j \leq N, \ldots$
- each of which requires a summation with $N$ terms.

So the total complexity is $\mathcal{O}\left\{T N^{2}\right\}$. For example, with $N=10$ and $T=100$, the complexity is only $T N^{2}=10,000$ multiplies (much, much less than $N^{T}!!$ )

## Outline

## (1) Hidden Markov Models

(2) Recognition: the Forward Algorithm
(3) Segmentation: the Backward Algorithm

4 Segmentation: the Viterbi Algorithm
(5) Summary

## The Segmentation Problem

There are different ways to define the segmentation problem. Let's define it this way:

- We want to find the most likely state, $q_{t}=i$, at time $t, \ldots$
- given knowledge of the entire sequence $O=\left[\vec{o}_{1}, \ldots, \vec{o}_{T}\right]$, not just the current observation. So for example, we don't want to recognize state $i$ at time $t$ if the surrounding observations, $\vec{o}_{t-1}$ and $\vec{o}_{t+1}$, make it obvious that this choice is impossible. Also,...
- given knowledge of the HMM that produced this sequence, $\lambda$. In other words, we want to find the state posterior probability, $p\left(q_{t}=i \mid O, \lambda\right)$. Let's define some more notation for the state posterior probability, let's call it

$$
\gamma_{t}(i)=p\left(q_{t}=i \mid O, \lambda\right)
$$

## Use Bayes' Rule

Suppose we already knew the joint probability, $p\left(O, q_{t}=i \mid \lambda\right)$. Then we could find the state posterior using Bayes' rule:

$$
\gamma_{t}(i)=p\left(q_{t}=i \mid O, \lambda\right)=\frac{p\left(O, q_{t}=i \mid \lambda\right)}{\sum_{j=1}^{N} p\left(O, q_{t}=j \mid \lambda\right)}
$$

## Use the Forward Algorithm

Let's expand this:

$$
p\left(O, q_{t}=i \mid \lambda\right)=p\left(q_{t}=i, \vec{o}_{1}, \ldots, \vec{o}_{T} \mid \lambda\right)
$$

We already know about half of that:
$\alpha_{t}(i)=p\left(q_{t}=i, \vec{o}_{1}, \ldots, \vec{o}_{t} \mid \lambda\right)$. We're only missing this part:

$$
p\left(O, q_{t}=i \mid \lambda\right)=\alpha_{t}(i) p\left(\vec{o}_{t+1}, \ldots, \vec{o}_{T} \mid q_{t}=i, \lambda\right)
$$

Again, let's try the trick of "solve the problem by inventing new notation." Let's define

$$
\beta_{t}(i) \equiv p\left(\vec{o}_{t+1}, \ldots, \vec{o}_{T} \mid q_{t}=i, \lambda\right)
$$

## The Backward Algorithm

Now let's use the definition $\beta_{t}(i) \equiv p\left(\vec{o}_{t+1}, \ldots, \vec{o}_{T} \mid q_{t}=i, \lambda\right)$, and see how we can compute that.
(1) Initialize:

$$
\beta_{T}(i)=1, \quad 1 \leq i \leq N
$$

This might not seem immediately obvious, but think about it. Given that there are no more $\vec{o}$ vectors after time $T$, what is the probability that there are no more $\vec{o}$ vectors after time $T$ ? Well, 1 , obviously.

## The Backward Algorithm

Now let's use the definition $\beta_{t}(i) \equiv p\left(\vec{o}_{t+1}, \ldots, \vec{o}_{T} \mid q_{t}=i, \lambda\right)$, and see how we can compute that.
(1) Initialize:

$$
\beta_{T}(i)=1, \quad 1 \leq i \leq N
$$

(2) Iterate:

$$
\begin{aligned}
\beta_{t}(i) & =p\left(\vec{o}_{t+1}, \ldots, \vec{o}_{T} \mid q_{t}=i, \lambda\right) \\
& =\sum_{j=1}^{N} p\left(q_{t+1}=j \mid q_{t}=i\right) p\left(\vec{o}_{t+1} \mid q_{t+1}=j\right) p\left(\vec{o}_{t+2}, \ldots, \vec{o}_{T} \mid q_{t+1}=j\right) \\
& =\sum_{j=1}^{N} a_{i j} b_{j}\left(\vec{o}_{t+1}\right) \beta_{t+1}(j)
\end{aligned}
$$

## The Backward Algorithm

Now let's use the definition $\beta_{t}(i) \equiv p\left(\vec{o}_{t+1}, \ldots, \vec{o}_{T} \mid q_{t}=i, \lambda\right)$, and see how we can compute that.
(1) Initialize:

$$
\beta_{T}(i)=1, \quad 1 \leq i \leq N
$$

(2) Iterate:

$$
\beta_{t}(i)=\sum_{j=1}^{N} a_{i j} b_{j}\left(\vec{o}_{t+1}\right) \beta_{t+1}(j), \quad 1 \leq i \leq N, 1 \leq t \leq T-1
$$

(3) Terminate:

$$
p(O \mid \lambda)=\sum_{i=1}^{N} \pi_{i} b_{i}\left(\vec{o}_{1}\right) \beta_{1}(i)
$$

## The Backward Algorithm: Computational Complexity

Most of the computational complexity is in this step:

- Iterate:

$$
\beta_{t}(i)=\sum_{j=1}^{N} a_{i j} b_{j}\left(\vec{o}_{t+1}\right) \beta_{t+1}(j), \quad 1 \leq i \leq N, 2 \leq t \leq T
$$

Its complexity is:

- For each of $T-1$ time steps, $1 \leq t \leq T-1, \ldots$
- we need to calculate $N$ different beta-variables, $\beta_{t}(i)$, for $1 \leq i \leq N, \ldots$
- each of which requires a summation with $N$ terms.

So the total complexity is $\mathcal{O}\left\{T N^{2}\right\}$.

## Use Bayes' Rule

The segmentation probability is then

$$
\begin{aligned}
\gamma_{t}(i) & =\frac{p\left(O, q_{t}=i \mid \lambda\right)}{\sum_{k=1}^{N} p\left(O, q_{t}=k \mid \lambda\right)} \\
& =\frac{p\left(\vec{o}_{1}, \ldots, \vec{o}_{t}, q_{t}=i \mid \lambda\right) p\left(\vec{o}_{t+1}, \ldots, \vec{o}_{T} \mid q_{t}=i, \lambda\right)}{\sum_{k=1}^{N} p\left(\vec{o}_{1}, \ldots, \vec{o}_{t}, q_{t}=k \mid \lambda\right) p\left(\vec{o}_{t+1}, \ldots, \vec{o}_{T} \mid q_{t}=k, \lambda\right)} \\
& =\frac{\alpha t(i) \beta_{t}(i)}{\sum_{k=1}^{N} \alpha_{t}(k) \beta_{t}(k)}
\end{aligned}
$$

## Segmentation: The Backward Algorithm

In summary, we now have three new probabilities, all of which can be computed in $\mathcal{O}\left\{T N^{2}\right\}$ time:
(1) The Backward Probability:

$$
\beta_{t}(i)=p\left(\vec{o}_{t+1}, \ldots, \vec{o}_{T} \mid q_{t}=i, \lambda\right)
$$

(2) The State Posterior:

$$
\gamma_{t}(i)=p\left(q_{t}=i \mid O, \lambda\right)=\frac{\alpha_{t}(i) \beta_{t}(i)}{\sum_{k=1}^{N} \alpha_{t}(k) \beta_{t}(k)}
$$

(3) The Segment Posterior:

$$
\begin{aligned}
\xi_{t}(i, j) & =p\left(q_{t}=i, q_{t+1}=j \mid O, \lambda\right) \\
& =\frac{\alpha_{t}(i) a_{i j} b_{j}\left(\vec{o}_{t+1}\right) \beta_{t+1}(j)}{\sum_{k=1}^{N} \sum_{\ell=1}^{N} \alpha_{t}(k) a_{k \ell} b_{\ell}\left(\vec{o}_{t+1}\right) \beta_{t+1}(\ell)}
\end{aligned}
$$

## Outline

## (1) Hidden Markov Models

(2) Recognition: the Forward Algorithm
(3) Segmentation: the Backward Algorithm
(4) Segmentation: the Viterbi Algorithm
(5) Summary

## Segmentation Problem: A Different Version

- Using the forward-backward algorithm, we can find $p\left(q_{t}=i \mid O, \lambda\right)$.
- Suppose we want to know all of the states, $Q=\left[q_{1}, \ldots, q_{T}\right]$. Notice that

$$
p\left(q_{1}, \ldots, q_{T} \mid O, \Lambda\right) \neq \prod_{t=1}^{T} p\left(q_{t} \mid O, \Lambda\right)
$$

For example, the maximizer of the RHS might be an impossible state sequence: $q_{t}=i$ and $q_{t+1}=j$ might be individually likely, but $p\left(q_{t+1}=j \mid q_{t}=i\right)$ might be 0 !

- In order to find $p\left(q_{1}, \ldots, q_{T} \mid O, \lambda\right)$, we need a different algorithm.


## Viterbi Algorithm

Since the method of "solve a problem by defining new variables" is working so well for us, let's try it again. Define

$$
\begin{aligned}
\delta_{t}(i) & \equiv \max _{q_{1}, \ldots, q_{t-1}} p\left(q_{1}, \vec{o}_{1}, \ldots, q_{t}=i, \vec{o}_{t} \mid \lambda\right) \\
\psi_{t}(i) & \equiv \underset{q_{t-1}}{\operatorname{argmax}} \max _{q_{1}, \ldots, q_{t-2}} p\left(q_{1}, \vec{o}_{1}, \ldots, q_{t}=i, \vec{o}_{t} \mid \lambda\right)
\end{aligned}
$$

The second term, $\psi_{t}(i)$, is called a back-pointer. It tells us:

- If you find yourself in state $i$ at time $t$,
- ... what was the most likely previuos state, $q_{t-1}$ ?


## The Viterbi Algorithm

So, working with the definition
$\delta_{t}(i) \equiv \max _{q_{1}, \ldots, q_{t-1}} p\left(q_{1}, \vec{o}_{1}, \ldots, q_{t}=i, \overrightarrow{o_{t}} \mid \lambda\right)$, let's see how we can actually calculate $\delta_{t}(i)$.
(1) Initialize:

$$
\begin{aligned}
\delta_{1}(i) & =p\left(q_{1}=i, \vec{o}_{1} \mid \lambda\right) \\
& =p\left(q_{1}=i \mid \lambda\right) p\left(\vec{o}_{1} \mid q_{1}=i, \lambda\right) \\
& =\pi_{i} b_{i}\left(\vec{o}_{1}\right) \\
\psi_{t}(i) & =\text { undefined }
\end{aligned}
$$

## The Viterbi Algorithm

$$
\delta_{t}(i) \equiv \max _{q_{1}, \ldots, q_{t-1}} p\left(q_{1}, \vec{o}_{1}, \ldots, q_{t}=i, \vec{o}_{t} \mid \lambda\right)
$$

(1) Initialize:

$$
\delta_{1}(i)=\pi_{i} b_{i}\left(\vec{o}_{1}\right), \quad 1 \leq i \leq N
$$

(2) Iterate:

$$
\begin{aligned}
\delta_{t}(j) & =\max _{q_{t-t}}\left(\operatorname { m a x } _ { q _ { 1 } , \ldots , q _ { t - 1 } } \left(p\left(q_{1}, \overrightarrow{o_{1}}, \ldots, q_{t-1}, \vec{o}_{t-1} \mid \lambda\right) \times\right.\right. \\
& \left.\left.p\left(q_{t}=j \mid q_{t-1}=i\right) p\left(\vec{o}_{t} \mid q_{t}=j\right)\right)\right) \\
& =\max _{i=1}^{N} \delta_{t-1}(i) a_{i j} b_{j}\left(\vec{o}_{t}\right) \\
\psi_{t}(j) & =\underset{i=1}{\operatorname{argmax}} \delta_{t-1}(i) a_{i j} b_{j}\left(\vec{o}_{t}\right)
\end{aligned}
$$

## The Viterbi Algorithm

$$
\delta_{t}(i) \equiv \max _{q_{1}, \ldots, q_{t-1}} p\left(q_{1}, \vec{o}_{1}, \ldots, q_{t}=i, \vec{o}_{t} \mid \lambda\right)
$$

(1) Initialize:

$$
\delta_{1}(i)=\pi_{i} b_{i}\left(\vec{o}_{1}\right), \quad 1 \leq i \leq N
$$

(2) Iterate:

$$
\begin{aligned}
& \delta_{t}(j)=\max _{i=1}^{N} \delta_{t-1}(i) a_{i j} b_{j}\left(\vec{o}_{t}\right), \quad 1 \leq j \leq N, 2 \leq t \leq T \\
& \psi_{t}(j)=\underset{i=1}{\operatorname{argmax}} \delta_{t-1}(i) a_{i j} b_{j}\left(\vec{o}_{t}\right), \quad 1 \leq j \leq N, 2 \leq t \leq T
\end{aligned}
$$

(3) Terminate:

$$
\max _{Q} p(O, Q \mid \lambda)=\max _{i=1}^{N} \delta_{T}(i)
$$

## Back-Tracing

Now that we have $\max _{Q} p(O, Q \mid \lambda)$, now we need to find

$$
\left[q_{1}^{*}, \ldots, q_{T}^{*}\right] \equiv \underset{Q}{\operatorname{argmax}} p(O, Q \mid \lambda)
$$

The algorithm is called "back-tracing." We start by finding the most likely final state:

$$
q_{T}^{*}=\underset{i}{\operatorname{argmax}} \delta_{T}(i)
$$

... and then we just follow the backpointers from there:

$$
q_{t-1}^{*}=\psi_{t}\left(q_{t}^{*}\right), \quad T \geq t \geq 2
$$

## Visualizing the Viterbi Algorithm using a Trellis



Using a trellis, the initialize step computes probabilities for the first column of the trellis:

$$
\delta_{1}(i)=\pi_{i} b_{i}\left(\vec{o}_{1}\right), \quad 1 \leq i \leq N
$$

## Visualizing the Viterbi Algorithm using a Trellis



The iterate step then computes the probability of the best path to each state in the $t^{\text {th }}$ column:

$$
\delta_{t}(j)=\max _{i=1}^{N} \delta_{t-1}(i) a_{i j} b_{j}\left(\vec{o}_{t}\right), \quad 1 \leq j \leq N, 2 \leq t \leq T
$$

## Visualizing the Viterbi Algorithm using a Trellis



Back-tracing then finds the most likely final state, and traces backward, from there, to find the most likely sequence over all:

$$
\begin{aligned}
q_{T}^{*} & =\underset{i}{\operatorname{argmax}} \delta_{T}(i) \\
q_{t-1}^{*} & =\psi_{t}\left(q_{t}^{*}\right), \quad T \geq t \geq 2
\end{aligned}
$$

## Outline

## (1) Hidden Markov Models

(2) Recognition: the Forward Algorithm
(3) Segmentation: the Backward Algorithm

4 Segmentation: the Viterbi Algorithm
(5) Summary

## Hidden Markov Model


(1) Start in state $q_{t}=i$ with pmf $\pi_{i}$.
(2) Generate an observation, $\vec{o}$, with pdf $b_{i}(\vec{o})$.
(3) Transition to a new state, $q_{t+1}=j$, according to pmf $a_{i j}$.
(9) Repeat.

## The Forward Algorithm

Definition: $\alpha_{t}(i) \equiv p\left(\vec{o}_{1}, \ldots, \vec{o}_{t}, q_{t}=i \mid \lambda\right)$. Computation:
(1) Initialize:

$$
\alpha_{1}(i)=\pi_{i} b_{i}\left(\vec{o}_{1}\right), \quad 1 \leq i \leq N
$$

(2) Iterate:

$$
\alpha_{t}(j)=\sum_{i=1}^{N} \alpha_{t-1}(i) a_{i j} b_{j}\left(\vec{o}_{t}\right), \quad 1 \leq j \leq N, 2 \leq t \leq T
$$

(3) Terminate:

$$
p(O \mid \lambda)=\sum_{i=1}^{N} \alpha_{T}(i)
$$

## The Backward Algorithm

Definition: $\beta_{t}(i) \equiv p\left(\vec{o}_{t+1}, \ldots, \vec{o}_{T} \mid q_{t}=i, \lambda\right)$. Computation:
(1) Initialize:

$$
\beta_{T}(i)=1, \quad 1 \leq i \leq N
$$

(2) Iterate:

$$
\beta_{t}(i)=\sum_{j=1}^{N} a_{i j} b_{j}\left(\vec{o}_{t+1}\right) \beta_{t+1}(j), \quad 1 \leq i \leq N, 1 \leq t \leq T-1
$$

(3) Terminate:

$$
p(O \mid \lambda)=\sum_{i=1}^{N} \pi_{i} b_{i}\left(\vec{o}_{1}\right) \beta_{1}(i)
$$

## The Viterbi Algorithm

(1) Initialize:

$$
\delta_{1}(i)=\pi_{i} b_{i}\left(\vec{o}_{1}\right), \quad 1 \leq i \leq N
$$

(2) Iterate:

$$
\begin{aligned}
& \delta_{t}(j)=\max _{i=1}^{N} \delta_{t-1}(i) a_{i j} b_{j}\left(\vec{o}_{t}\right), \quad 1 \leq j \leq N, 2 \leq t \leq T \\
& \psi_{t}(j)=\underset{i=1}{\operatorname{argmax}} \delta_{t-1}(i) a_{i j} b_{j}\left(\vec{o}_{t}\right), \quad 1 \leq j \leq N, \quad 2 \leq t \leq T
\end{aligned}
$$

(3) Back-trace:

$$
\begin{aligned}
q_{T}^{*} & =\underset{i}{\operatorname{argmax}} \delta_{T}(i) \\
q_{t-1}^{*} & =\psi_{t}\left(q_{t}^{*}\right), \quad T \geq t \geq 2
\end{aligned}
$$

