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Notation: Inputs and Outputs

The observation sequence is a sequence of short-time
spectra, or other observation vectors, O = [~o1, . . . , ~oT ].

The model parameters, λy , are a set of numbers that
describe the probability of observing O, given that word y was
produced.

Isolated word recognition is the problem of figuring out
which word has the maximum probability, i.e., finding

argmax
y

p(O|λy )p(y)
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Review: Automatic Speech Recognition

Remember that Velichko & Zagoruyko broke down the problem of
ASR into two key subproblems:

Variable acoustics: V&Z solved this problem by calculating
Euclidean distance using a perceptually-motivated feature
vector.

Variable duration: V&Z solved this problem using dynamic
time warping.
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Hidden Markov Model

The hidden Markov model (HMM) solves the same problems, in a
more scalable fashion:

Variable acoustics: Instead of storing training examples, the
HMM stores a model, λy , specifying the probability density
function of the short-time spectrum, ~ot , given the index of the
speech sound being produced at that instant, qt :

p(~ot |qt , λy )

Variable duration: The HMM solves this problem by
imagining that each word is composed of a sequence of
speech sounds, or “states:” Q = [q1, . . . , qT ], and that the
likelihood of the word is

p(O|λy ) =
∑
Q

p(Q,O|λy )
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HMM: Key Concepts

An HMM is a “generative model,” meaning that it models the
joint probability p(Q,O|λ) using a model of the way in which
those data might have been generated. An HMM pretends the
following generative process:

1 Start in state qt = i with pmf πi = p(q1 = i).

2 Generate an observation, ~o, with pdf bi (~o) = p(~o|qt = i).

3 Transition to a new state, qt+1 = j , according to pmf
aij = p(qt+1 = j |qt = i).

4 Repeat.

The model parameters that define any particular word are thus

λy = {Π,A,B}
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HMM: Finite State Diagram

1 2 3

~o ~o ~o

a11
a12

a13

b1(~o)

a22

a21

a23

b2(~o)

a33

a32

a31
b3(~o)

1 Start in state qt = i , for some 1 ≤ i ≤ N.

2 Generate an observation, ~o, with pdf bi (~o).

3 Transition to a new state, qt+1 = j , according to pmf aij .

4 Repeat steps #2 and #3, T times each.
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Notation: Model Parameters

Solving an HMM is possible if you carefully keep track of
notation. Here’s standard notation for the parameters:

πi = p(q1 = i) is called the initial state probability. Let N
be the number of different states, so that 1 ≤ i ≤ N.

aij = p(qt = j |qt−1 = i) is called the transition probability,
1 ≤ i , j ≤ N.

bj(~o) = p(~ot = ~o|qt = j) is called the observation
probability. It is usually estimated by a neural network,
though Gaussians, GMMs, and even lookup tables are possible.

λ is the complete set of model parameters, including all the
πi ’s and aij ’s, and the Gaussian, GMM, or neural net
parameters necessary to compute bj(~o).
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The Three Problems for an HMM

1 Recognition: Given two different HMMs, λ1 and λ2, and an
observation sequence O. Which HMM was more likely to have
produced O? In other words, is p(O|λ1) > p(O|λ2)?

2 Segmentation: What is p(qt = i |O, λ)?

3 Training: Given an initial HMM λ, and an observation
sequence O, can we find λ̄ such that p(O|λ̄) > p(O|λ)?
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The HMM Recognition Problem

Given

O = [~o1, . . . , ~oT ] and
λ = {πi , aij , bj(~o)∀i , j},

what is p(O|λ)?

Let’s solve a simpler problem first:

Given

O = [~o1, . . . , ~oT ] and
Q = [q1, . . . , qT ] and
λ = {πi , aij , bj(~o)∀i , j},

what is p(O,Q|λ)?
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Joint Probability of State Sequence and Observation
Sequence

The joint probability of the state sequence and the observation
sequence is calculated iteratively, from beginning to end:

The probability that q1 = q1 is πq1 .

Given q1, the probability of ~o1 is bq1(~o1).

Given q1, the probability of q2 is aq1q2 .

. . . and so on. . .

p(Q,O|λ) = πq1bq1(~o1)
T∏
t=2

aqt−1qtbqt (~ot)
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Probability of the Observation Sequence

The probability of the observation sequence, alone, is somewhat
harder, because we have to solve this sum:

p(O|λ) =
∑
Q

p(Q,O|λ)

=
N∑

qT=1

· · ·
N∑

q1=1

p(Q,O|λ)

On the face of it, this calculation seems to have complexity
O
{
NT
}

. So for a very small 100-frame utterance, with only 10
states, we have a complexity of O

{
10100

}
=one google.
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The Forward Algorithm

The solution is to use a kind of dynamic programming algorithm,
called “the forward algorithm.” The forward probability is defined
as follows:

αt(i) ≡ p(~o1, . . . , ~ot , qt = i |λ)

Obviously, if we can find αt(i) for all i and all t, we will have
solved the recognition problem, because

p(O|λ) = p(~o1, . . . , ~oT |λ)

=
N∑
i=1

p(~o1, . . . , ~oT , qT = i |λ)

=
N∑
i=1

αT (i)



HMM Recognition Segmentation Viterbi Summary

The Forward Algorithm

So, working with the definition αt(i) ≡ p(~o1, . . . , ~ot , qt = i |λ),
let’s see how we can actually calculate αt(i).

1 Initialize:

α1(i) = p(q1 = i , ~o1|λ)

= p(q1 = i |λ)p(~o1|q1 = i , λ)

= πibi (~o1)



HMM Recognition Segmentation Viterbi Summary

The Forward Algorithm

Definition: αt(i) ≡ p(~o1, . . . , ~ot , qt = i |λ).

1 Initialize:
α1(i) = πibi (~o1), 1 ≤ i ≤ N

2 Iterate:

αt(j) = p(~o1, . . . , ~ot , qt = j |λ)

=
N∑
i=1

p(~o1, . . . , ~ot−1, qt−1 = i)p(qt = j |qt−1 = i)p(~ot |qt = j)

=
N∑
i=1

αt−1(i)aijbj(~ot)
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The Forward Algorithm

So, working with the definition αt(i) ≡ p(~o1, . . . , ~ot , qt = i |λ),
let’s see how we can actually calculate αt(i).

1 Initialize:
α1(i) = πibi (~o1), 1 ≤ i ≤ N

2 Iterate:

αt(j) =
N∑
i=1

αt−1(i)aijbj(~ot), 1 ≤ j ≤ N, 2 ≤ t ≤ T

3 Terminate:

p(O|λ) =
N∑
i=1

αT (i)



HMM Recognition Segmentation Viterbi Summary

Visualizing the Forward Algorithm using a Trellis

One way to think about the forward algorithm is by way of a
trellis. A trellis is a matrix in which each time step is a column,
and each row shows a different state. For example, here’s a trellis
with N = 4 states, and T = 5 frames:

Public domain image by Qef, 2009
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Visualizing the Forward Algorithm using a Trellis

Using a trellis, the initialize step computes probabilities for the
first column of the trellis:

α1(i) = πibi (~o1), 1 ≤ i ≤ N
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Visualizing the Forward Algorithm using a Trellis

The iterate step then computes the probabilities in the tth column
by adding up the probabilities in the (t − 1)st column, each
multiplied by the corresponding transition probability:

αt(j) =
N∑
i=1

αt−1(i)aijbj(~ot), 1 ≤ j ≤ N, 2 ≤ t ≤ T
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Visualizing the Forward Algorithm using a Trellis

The terminate step then computes the likelihood of the model by
adding the probabilities in the last column:

p(O|λ) =
N∑
i=1

αT (i)
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The Forward Algorithm: Computational Complexity

Most of the computational complexity is in this step:

Iterate:

αt(j) =
N∑
i=1

αt−1(i)aijbj(~ot), 1 ≤ i , j ≤ N, 2 ≤ t ≤ T

Its complexity is:

For each of T − 1 time steps, 2 ≤ t ≤ T ,. . .

we need to calculate N different alpha-variables, αt(j), for
1 ≤ j ≤ N,. . .

each of which requires a summation with N terms.

So the total complexity is O
{
TN2

}
. For example, with N = 10

and T = 100, the complexity is only TN2 = 10, 000 multiplies
(much, much less than NT !!)
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The Segmentation Problem

There are different ways to define the segmentation problem. Let’s
define it this way:

We want to find the most likely state, qt = i , at time t,. . .

given knowledge of the entire sequence O = [~o1, . . . , ~oT ], not
just the current observation. So for example, we don’t want
to recognize state i at time t if the surrounding observations,
~ot−1 and ~ot+1, make it obvious that this choice is impossible.
Also,. . .

given knowledge of the HMM that produced this sequence, λ.

In other words, we want to find the state posterior probability,
p(qt = i |O, λ). Let’s define some more notation for the state
posterior probability, let’s call it

γt(i) = p(qt = i |O, λ)
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Use Bayes’ Rule

Suppose we already knew the joint probability, p(O, qt = i |λ).
Then we could find the state posterior using Bayes’ rule:

γt(i) = p(qt = i |O, λ) =
p(O, qt = i |λ)∑N
j=1 p(O, qt = j |λ)
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Use the Forward Algorithm

Let’s expand this:

p(O, qt = i |λ) = p(qt = i , ~o1, . . . , ~oT |λ)

We already know about half of that:
αt(i) = p(qt = i , ~o1, . . . , ~ot |λ). We’re only missing this part:

p(O, qt = i |λ) = αt(i)p(~ot+1, . . . , ~oT |qt = i , λ)

Again, let’s try the trick of “solve the problem by inventing new
notation.” Let’s define

βt(i) ≡ p(~ot+1, . . . , ~oT |qt = i , λ)
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The Backward Algorithm

Now let’s use the definition βt(i) ≡ p(~ot+1, . . . , ~oT |qt = i , λ), and
see how we can compute that.

1 Initialize:
βT (i) = 1, 1 ≤ i ≤ N

This might not seem immediately obvious, but think about it.
Given that there are no more ~o vectors after time T , what is
the probability that there are no more ~o vectors after time T?
Well, 1, obviously.
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The Backward Algorithm

Now let’s use the definition βt(i) ≡ p(~ot+1, . . . , ~oT |qt = i , λ), and
see how we can compute that.

1 Initialize:
βT (i) = 1, 1 ≤ i ≤ N

2 Iterate:

βt(i) = p(~ot+1, . . . , ~oT |qt = i , λ)

=
N∑
j=1

p(qt+1 = j |qt = i)p(~ot+1|qt+1 = j)p(~ot+2, . . . , ~oT |qt+1 = j)

=
N∑
j=1

aijbj(~ot+1)βt+1(j)
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The Backward Algorithm

Now let’s use the definition βt(i) ≡ p(~ot+1, . . . , ~oT |qt = i , λ), and
see how we can compute that.

1 Initialize:
βT (i) = 1, 1 ≤ i ≤ N

2 Iterate:

βt(i) =
N∑
j=1

aijbj(~ot+1)βt+1(j), 1 ≤ i ≤ N, 1 ≤ t ≤ T − 1

3 Terminate:

p(O|λ) =
N∑
i=1

πibi (~o1)β1(i)
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The Backward Algorithm: Computational Complexity

Most of the computational complexity is in this step:

Iterate:

βt(i) =
N∑
j=1

aijbj(~ot+1)βt+1(j), 1 ≤ i ≤ N, 2 ≤ t ≤ T

Its complexity is:

For each of T − 1 time steps, 1 ≤ t ≤ T − 1,. . .

we need to calculate N different beta-variables, βt(i), for
1 ≤ i ≤ N,. . .

each of which requires a summation with N terms.

So the total complexity is O
{
TN2

}
.
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Use Bayes’ Rule

The segmentation probability is then

γt(i) =
p(O, qt = i |λ)∑N

k=1 p(O, qt = k |λ)

=
p(~o1, . . . , ~ot , qt = i |λ)p(~ot+1, . . . , ~oT |qt = i , λ)∑N

k=1 p(~o1, . . . , ~ot , qt = k |λ)p(~ot+1, . . . , ~oT |qt = k, λ)

=
αt(i)βt(i)∑N

k=1 αt(k)βt(k)
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Segmentation: The Backward Algorithm

In summary, we now have three new probabilities, all of which can
be computed in O

{
TN2

}
time:

1 The Backward Probability:

βt(i) = p(~ot+1, . . . , ~oT |qt = i , λ)

2 The State Posterior:

γt(i) = p(qt = i |O, λ) =
αt(i)βt(i)∑N

k=1 αt(k)βt(k)

3 The Segment Posterior:

ξt(i , j) = p(qt = i , qt+1 = j |O, λ)

=
αt(i)aijbj(~ot+1)βt+1(j)∑N

k=1

∑N
`=1 αt(k)ak`b`(~ot+1)βt+1(`)
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Segmentation Problem: A Different Version

Using the forward-backward algorithm, we can find
p(qt = i |O, λ).

Suppose we want to know all of the states, Q = [q1, . . . , qT ].
Notice that

p(q1, . . . , qT |O,Λ) 6=
T∏
t=1

p(qt |O,Λ)

For example, the maximizer of the RHS might be an
impossible state sequence: qt = i and qt+1 = j might be
individually likely, but p(qt+1 = j |qt = i) might be 0!

In order to find p(q1, . . . , qT |O, λ), we need a different
algorithm.
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Viterbi Algorithm

Since the method of “solve a problem by defining new variables” is
working so well for us, let’s try it again. Define

δt(i) ≡ max
q1,...,qt−1

p(q1, ~o1, . . . , qt = i , ~ot |λ)

ψt(i) ≡ argmax
qt−1

max
q1,...,qt−2

p(q1, ~o1, . . . , qt = i , ~ot |λ)

The second term, ψt(i), is called a back-pointer. It tells us:

If you find yourself in state i at time t,

. . . what was the most likely previuos state, qt−1?
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The Viterbi Algorithm

So, working with the definition
δt(i) ≡ maxq1,...,qt−1 p(q1, ~o1, . . . , qt = i , ~ot |λ), let’s see how we
can actually calculate δt(i).

1 Initialize:

δ1(i) = p(q1 = i , ~o1|λ)

= p(q1 = i |λ)p(~o1|q1 = i , λ)

= πibi (~o1)

ψt(i) = undefined
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The Viterbi Algorithm

δt(i) ≡ maxq1,...,qt−1 p(q1, ~o1, . . . , qt = i , ~ot |λ)

1 Initialize:
δ1(i) = πibi (~o1), 1 ≤ i ≤ N

2 Iterate:

δt(j) = max
qt−t

(
max

q1,...,qt−1

(p(q1, ~o1, . . . , qt−1, ~ot−1|λ)×

p(qt = j |qt−1 = i)p(~ot |qt = j)))

=
N

max
i=1

δt−1(i)aijbj(~ot)

ψt(j) =
N

argmax
i=1

δt−1(i)aijbj(~ot)
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The Viterbi Algorithm

δt(i) ≡ maxq1,...,qt−1 p(q1, ~o1, . . . , qt = i , ~ot |λ)

1 Initialize:
δ1(i) = πibi (~o1), 1 ≤ i ≤ N

2 Iterate:

δt(j) =
N

max
i=1

δt−1(i)aijbj(~ot), 1 ≤ j ≤ N, 2 ≤ t ≤ T

ψt(j) =
N

argmax
i=1

δt−1(i)aijbj(~ot), 1 ≤ j ≤ N, 2 ≤ t ≤ T

3 Terminate:

max
Q

p(O,Q|λ) =
N

max
i=1

δT (i)



HMM Recognition Segmentation Viterbi Summary

Back-Tracing

Now that we have maxQ p(O,Q|λ), now we need to find

[q∗1 , . . . , q
∗
T ] ≡ argmax

Q
p(O,Q|λ)

The algorithm is called “back-tracing.” We start by finding the
most likely final state:

q∗T = argmax
i

δT (i)

. . . and then we just follow the backpointers from there:

q∗t−1 = ψt(q
∗
t ), T ≥ t ≥ 2



HMM Recognition Segmentation Viterbi Summary

Visualizing the Viterbi Algorithm using a Trellis

Using a trellis, the initialize step computes probabilities for the
first column of the trellis:

δ1(i) = πibi (~o1), 1 ≤ i ≤ N
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Visualizing the Viterbi Algorithm using a Trellis

The iterate step then computes the probability of the best path
to each state in the tth column:

δt(j) =
N

max
i=1

δt−1(i)aijbj(~ot), 1 ≤ j ≤ N, 2 ≤ t ≤ T
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Visualizing the Viterbi Algorithm using a Trellis

Back-tracing then finds the most likely final state, and traces
backward, from there, to find the most likely sequence over all:

q∗T = argmax
i

δT (i)

q∗t−1 = ψt(q
∗
t ), T ≥ t ≥ 2
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Hidden Markov Model

1 2 3

~o ~o ~o

a11
a12

a13

b1(~o)

a22

a21

a23

b2(~o)

a33

a32

a31
b3(~o)

1 Start in state qt = i with pmf πi .

2 Generate an observation, ~o, with pdf bi (~o).

3 Transition to a new state, qt+1 = j , according to pmf aij .

4 Repeat.
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The Forward Algorithm

Definition: αt(i) ≡ p(~o1, . . . , ~ot , qt = i |λ). Computation:

1 Initialize:
α1(i) = πibi (~o1), 1 ≤ i ≤ N

2 Iterate:

αt(j) =
N∑
i=1

αt−1(i)aijbj(~ot), 1 ≤ j ≤ N, 2 ≤ t ≤ T

3 Terminate:

p(O|λ) =
N∑
i=1

αT (i)
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The Backward Algorithm

Definition: βt(i) ≡ p(~ot+1, . . . , ~oT |qt = i , λ). Computation:

1 Initialize:
βT (i) = 1, 1 ≤ i ≤ N

2 Iterate:

βt(i) =
N∑
j=1

aijbj(~ot+1)βt+1(j), 1 ≤ i ≤ N, 1 ≤ t ≤ T − 1

3 Terminate:

p(O|λ) =
N∑
i=1

πibi (~o1)β1(i)
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The Viterbi Algorithm

1 Initialize:
δ1(i) = πibi (~o1), 1 ≤ i ≤ N

2 Iterate:

δt(j) =
N

max
i=1

δt−1(i)aijbj(~ot), 1 ≤ j ≤ N, 2 ≤ t ≤ T

ψt(j) =
N

argmax
i=1

δt−1(i)aijbj(~ot), 1 ≤ j ≤ N, 2 ≤ t ≤ T

3 Back-trace:

q∗T = argmax
i

δT (i)

q∗t−1 = ψt(q
∗
t ), T ≥ t ≥ 2
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