
HMM Recognition Segmentation Viterbi Summary

Lecture 14: A tutorial on hidden Markov models
and selected applications in speech recognition,

part 1

Mark Hasegawa-Johnson
All content CC-BY 4.0 unless otherwise specified.

ECE 537, Fall 2022

https://creativecommons.org/licenses/by/4.0/

HMM Recognition Segmentation Viterbi Summary

1 Hidden Markov Models

2 Recognition: the Forward Algorithm

3 Segmentation: the Backward Algorithm

4 Segmentation: the Viterbi Algorithm

5 Summary

HMM Recognition Segmentation Viterbi Summary

Outline

1 Hidden Markov Models

2 Recognition: the Forward Algorithm

3 Segmentation: the Backward Algorithm

4 Segmentation: the Viterbi Algorithm

5 Summary

HMM Recognition Segmentation Viterbi Summary

Notation: Inputs and Outputs

The observation sequence is a sequence of short-time
spectra, or other observation vectors, O = [~o1, . . . , ~oT].

The model parameters, λy , are a set of numbers that
describe the probability of observing O, given that word y was
produced.

Isolated word recognition is the problem of figuring out
which word has the maximum probability, i.e., finding

argmax
y

p(O|λy)p(y)

HMM Recognition Segmentation Viterbi Summary

Review: Automatic Speech Recognition

Remember that Velichko & Zagoruyko broke down the problem of
ASR into two key subproblems:

Variable acoustics: V&Z solved this problem by calculating
Euclidean distance using a perceptually-motivated feature
vector.

Variable duration: V&Z solved this problem using dynamic
time warping.

HMM Recognition Segmentation Viterbi Summary

Hidden Markov Model

The hidden Markov model (HMM) solves the same problems, in a
more scalable fashion:

Variable acoustics: Instead of storing training examples, the
HMM stores a model, λy , specifying the probability density
function of the short-time spectrum, ~ot , given the index of the
speech sound being produced at that instant, qt :

p(~ot |qt , λy)

Variable duration: The HMM solves this problem by
imagining that each word is composed of a sequence of
speech sounds, or “states:” Q = [q1, . . . , qT], and that the
likelihood of the word is

p(O|λy) =
∑
Q

p(Q,O|λy)

HMM Recognition Segmentation Viterbi Summary

HMM: Key Concepts

An HMM is a “generative model,” meaning that it models the
joint probability p(Q,O|λ) using a model of the way in which
those data might have been generated. An HMM pretends the
following generative process:

1 Start in state qt = i with pmf πi = p(q1 = i).

2 Generate an observation, ~o, with pdf bi (~o) = p(~o|qt = i).

3 Transition to a new state, qt+1 = j , according to pmf
aij = p(qt+1 = j |qt = i).

4 Repeat.

The model parameters that define any particular word are thus

λy = {Π,A,B}

HMM Recognition Segmentation Viterbi Summary

HMM: Finite State Diagram

1 2 3

~o ~o ~o

a11
a12

a13

b1(~o)

a22

a21

a23

b2(~o)

a33

a32

a31
b3(~o)

1 Start in state qt = i , for some 1 ≤ i ≤ N.

2 Generate an observation, ~o, with pdf bi (~o).

3 Transition to a new state, qt+1 = j , according to pmf aij .

4 Repeat steps #2 and #3, T times each.

HMM Recognition Segmentation Viterbi Summary

Notation: Model Parameters

Solving an HMM is possible if you carefully keep track of
notation. Here’s standard notation for the parameters:

πi = p(q1 = i) is called the initial state probability. Let N
be the number of different states, so that 1 ≤ i ≤ N.

aij = p(qt = j |qt−1 = i) is called the transition probability,
1 ≤ i , j ≤ N.

bj(~o) = p(~ot = ~o|qt = j) is called the observation
probability. It is usually estimated by a neural network,
though Gaussians, GMMs, and even lookup tables are possible.

λ is the complete set of model parameters, including all the
πi ’s and aij ’s, and the Gaussian, GMM, or neural net
parameters necessary to compute bj(~o).

HMM Recognition Segmentation Viterbi Summary

The Three Problems for an HMM

1 Recognition: Given two different HMMs, λ1 and λ2, and an
observation sequence O. Which HMM was more likely to have
produced O? In other words, is p(O|λ1) > p(O|λ2)?

2 Segmentation: What is p(qt = i |O, λ)?

3 Training: Given an initial HMM λ, and an observation
sequence O, can we find λ̄ such that p(O|λ̄) > p(O|λ)?

HMM Recognition Segmentation Viterbi Summary

Outline

1 Hidden Markov Models

2 Recognition: the Forward Algorithm

3 Segmentation: the Backward Algorithm

4 Segmentation: the Viterbi Algorithm

5 Summary

HMM Recognition Segmentation Viterbi Summary

The HMM Recognition Problem

Given

O = [~o1, . . . , ~oT] and
λ = {πi , aij , bj(~o)∀i , j},

what is p(O|λ)?

Let’s solve a simpler problem first:

Given

O = [~o1, . . . , ~oT] and
Q = [q1, . . . , qT] and
λ = {πi , aij , bj(~o)∀i , j},

what is p(O,Q|λ)?

HMM Recognition Segmentation Viterbi Summary

Joint Probability of State Sequence and Observation
Sequence

The joint probability of the state sequence and the observation
sequence is calculated iteratively, from beginning to end:

The probability that q1 = q1 is πq1 .

Given q1, the probability of ~o1 is bq1(~o1).

Given q1, the probability of q2 is aq1q2 .

. . . and so on. . .

p(Q,O|λ) = πq1bq1(~o1)
T∏
t=2

aqt−1qtbqt (~ot)

HMM Recognition Segmentation Viterbi Summary

Probability of the Observation Sequence

The probability of the observation sequence, alone, is somewhat
harder, because we have to solve this sum:

p(O|λ) =
∑
Q

p(Q,O|λ)

=
N∑

qT=1

· · ·
N∑

q1=1

p(Q,O|λ)

On the face of it, this calculation seems to have complexity
O
{
NT
}

. So for a very small 100-frame utterance, with only 10
states, we have a complexity of O

{
10100

}
=one google.

HMM Recognition Segmentation Viterbi Summary

The Forward Algorithm

The solution is to use a kind of dynamic programming algorithm,
called “the forward algorithm.” The forward probability is defined
as follows:

αt(i) ≡ p(~o1, . . . , ~ot , qt = i |λ)

Obviously, if we can find αt(i) for all i and all t, we will have
solved the recognition problem, because

p(O|λ) = p(~o1, . . . , ~oT |λ)

=
N∑
i=1

p(~o1, . . . , ~oT , qT = i |λ)

=
N∑
i=1

αT (i)

HMM Recognition Segmentation Viterbi Summary

The Forward Algorithm

So, working with the definition αt(i) ≡ p(~o1, . . . , ~ot , qt = i |λ),
let’s see how we can actually calculate αt(i).

1 Initialize:

α1(i) = p(q1 = i , ~o1|λ)

= p(q1 = i |λ)p(~o1|q1 = i , λ)

= πibi (~o1)

HMM Recognition Segmentation Viterbi Summary

The Forward Algorithm

Definition: αt(i) ≡ p(~o1, . . . , ~ot , qt = i |λ).

1 Initialize:
α1(i) = πibi (~o1), 1 ≤ i ≤ N

2 Iterate:

αt(j) = p(~o1, . . . , ~ot , qt = j |λ)

=
N∑
i=1

p(~o1, . . . , ~ot−1, qt−1 = i)p(qt = j |qt−1 = i)p(~ot |qt = j)

=
N∑
i=1

αt−1(i)aijbj(~ot)

HMM Recognition Segmentation Viterbi Summary

The Forward Algorithm

So, working with the definition αt(i) ≡ p(~o1, . . . , ~ot , qt = i |λ),
let’s see how we can actually calculate αt(i).

1 Initialize:
α1(i) = πibi (~o1), 1 ≤ i ≤ N

2 Iterate:

αt(j) =
N∑
i=1

αt−1(i)aijbj(~ot), 1 ≤ j ≤ N, 2 ≤ t ≤ T

3 Terminate:

p(O|λ) =
N∑
i=1

αT (i)

HMM Recognition Segmentation Viterbi Summary

Visualizing the Forward Algorithm using a Trellis

One way to think about the forward algorithm is by way of a
trellis. A trellis is a matrix in which each time step is a column,
and each row shows a different state. For example, here’s a trellis
with N = 4 states, and T = 5 frames:

Public domain image by Qef, 2009

HMM Recognition Segmentation Viterbi Summary

Visualizing the Forward Algorithm using a Trellis

Using a trellis, the initialize step computes probabilities for the
first column of the trellis:

α1(i) = πibi (~o1), 1 ≤ i ≤ N

HMM Recognition Segmentation Viterbi Summary

Visualizing the Forward Algorithm using a Trellis

The iterate step then computes the probabilities in the tth column
by adding up the probabilities in the (t − 1)st column, each
multiplied by the corresponding transition probability:

αt(j) =
N∑
i=1

αt−1(i)aijbj(~ot), 1 ≤ j ≤ N, 2 ≤ t ≤ T

HMM Recognition Segmentation Viterbi Summary

Visualizing the Forward Algorithm using a Trellis

The terminate step then computes the likelihood of the model by
adding the probabilities in the last column:

p(O|λ) =
N∑
i=1

αT (i)

HMM Recognition Segmentation Viterbi Summary

The Forward Algorithm: Computational Complexity

Most of the computational complexity is in this step:

Iterate:

αt(j) =
N∑
i=1

αt−1(i)aijbj(~ot), 1 ≤ i , j ≤ N, 2 ≤ t ≤ T

Its complexity is:

For each of T − 1 time steps, 2 ≤ t ≤ T ,. . .

we need to calculate N different alpha-variables, αt(j), for
1 ≤ j ≤ N,. . .

each of which requires a summation with N terms.

So the total complexity is O
{
TN2

}
. For example, with N = 10

and T = 100, the complexity is only TN2 = 10, 000 multiplies
(much, much less than NT !!)

HMM Recognition Segmentation Viterbi Summary

Outline

1 Hidden Markov Models

2 Recognition: the Forward Algorithm

3 Segmentation: the Backward Algorithm

4 Segmentation: the Viterbi Algorithm

5 Summary

HMM Recognition Segmentation Viterbi Summary

The Segmentation Problem

There are different ways to define the segmentation problem. Let’s
define it this way:

We want to find the most likely state, qt = i , at time t,. . .

given knowledge of the entire sequence O = [~o1, . . . , ~oT], not
just the current observation. So for example, we don’t want
to recognize state i at time t if the surrounding observations,
~ot−1 and ~ot+1, make it obvious that this choice is impossible.
Also,. . .

given knowledge of the HMM that produced this sequence, λ.

In other words, we want to find the state posterior probability,
p(qt = i |O, λ). Let’s define some more notation for the state
posterior probability, let’s call it

γt(i) = p(qt = i |O, λ)

HMM Recognition Segmentation Viterbi Summary

Use Bayes’ Rule

Suppose we already knew the joint probability, p(O, qt = i |λ).
Then we could find the state posterior using Bayes’ rule:

γt(i) = p(qt = i |O, λ) =
p(O, qt = i |λ)∑N
j=1 p(O, qt = j |λ)

HMM Recognition Segmentation Viterbi Summary

Use the Forward Algorithm

Let’s expand this:

p(O, qt = i |λ) = p(qt = i , ~o1, . . . , ~oT |λ)

We already know about half of that:
αt(i) = p(qt = i , ~o1, . . . , ~ot |λ). We’re only missing this part:

p(O, qt = i |λ) = αt(i)p(~ot+1, . . . , ~oT |qt = i , λ)

Again, let’s try the trick of “solve the problem by inventing new
notation.” Let’s define

βt(i) ≡ p(~ot+1, . . . , ~oT |qt = i , λ)

HMM Recognition Segmentation Viterbi Summary

The Backward Algorithm

Now let’s use the definition βt(i) ≡ p(~ot+1, . . . , ~oT |qt = i , λ), and
see how we can compute that.

1 Initialize:
βT (i) = 1, 1 ≤ i ≤ N

This might not seem immediately obvious, but think about it.
Given that there are no more ~o vectors after time T , what is
the probability that there are no more ~o vectors after time T?
Well, 1, obviously.

HMM Recognition Segmentation Viterbi Summary

The Backward Algorithm

Now let’s use the definition βt(i) ≡ p(~ot+1, . . . , ~oT |qt = i , λ), and
see how we can compute that.

1 Initialize:
βT (i) = 1, 1 ≤ i ≤ N

2 Iterate:

βt(i) = p(~ot+1, . . . , ~oT |qt = i , λ)

=
N∑
j=1

p(qt+1 = j |qt = i)p(~ot+1|qt+1 = j)p(~ot+2, . . . , ~oT |qt+1 = j)

=
N∑
j=1

aijbj(~ot+1)βt+1(j)

HMM Recognition Segmentation Viterbi Summary

The Backward Algorithm

Now let’s use the definition βt(i) ≡ p(~ot+1, . . . , ~oT |qt = i , λ), and
see how we can compute that.

1 Initialize:
βT (i) = 1, 1 ≤ i ≤ N

2 Iterate:

βt(i) =
N∑
j=1

aijbj(~ot+1)βt+1(j), 1 ≤ i ≤ N, 1 ≤ t ≤ T − 1

3 Terminate:

p(O|λ) =
N∑
i=1

πibi (~o1)β1(i)

HMM Recognition Segmentation Viterbi Summary

The Backward Algorithm: Computational Complexity

Most of the computational complexity is in this step:

Iterate:

βt(i) =
N∑
j=1

aijbj(~ot+1)βt+1(j), 1 ≤ i ≤ N, 2 ≤ t ≤ T

Its complexity is:

For each of T − 1 time steps, 1 ≤ t ≤ T − 1,. . .

we need to calculate N different beta-variables, βt(i), for
1 ≤ i ≤ N,. . .

each of which requires a summation with N terms.

So the total complexity is O
{
TN2

}
.

HMM Recognition Segmentation Viterbi Summary

Use Bayes’ Rule

The segmentation probability is then

γt(i) =
p(O, qt = i |λ)∑N

k=1 p(O, qt = k |λ)

=
p(~o1, . . . , ~ot , qt = i |λ)p(~ot+1, . . . , ~oT |qt = i , λ)∑N

k=1 p(~o1, . . . , ~ot , qt = k |λ)p(~ot+1, . . . , ~oT |qt = k, λ)

=
αt(i)βt(i)∑N

k=1 αt(k)βt(k)

HMM Recognition Segmentation Viterbi Summary

Segmentation: The Backward Algorithm

In summary, we now have three new probabilities, all of which can
be computed in O

{
TN2

}
time:

1 The Backward Probability:

βt(i) = p(~ot+1, . . . , ~oT |qt = i , λ)

2 The State Posterior:

γt(i) = p(qt = i |O, λ) =
αt(i)βt(i)∑N

k=1 αt(k)βt(k)

3 The Segment Posterior:

ξt(i , j) = p(qt = i , qt+1 = j |O, λ)

=
αt(i)aijbj(~ot+1)βt+1(j)∑N

k=1

∑N
`=1 αt(k)ak`b`(~ot+1)βt+1(`)

HMM Recognition Segmentation Viterbi Summary

Outline

1 Hidden Markov Models

2 Recognition: the Forward Algorithm

3 Segmentation: the Backward Algorithm

4 Segmentation: the Viterbi Algorithm

5 Summary

HMM Recognition Segmentation Viterbi Summary

Segmentation Problem: A Different Version

Using the forward-backward algorithm, we can find
p(qt = i |O, λ).

Suppose we want to know all of the states, Q = [q1, . . . , qT].
Notice that

p(q1, . . . , qT |O,Λ) 6=
T∏
t=1

p(qt |O,Λ)

For example, the maximizer of the RHS might be an
impossible state sequence: qt = i and qt+1 = j might be
individually likely, but p(qt+1 = j |qt = i) might be 0!

In order to find p(q1, . . . , qT |O, λ), we need a different
algorithm.

HMM Recognition Segmentation Viterbi Summary

Viterbi Algorithm

Since the method of “solve a problem by defining new variables” is
working so well for us, let’s try it again. Define

δt(i) ≡ max
q1,...,qt−1

p(q1, ~o1, . . . , qt = i , ~ot |λ)

ψt(i) ≡ argmax
qt−1

max
q1,...,qt−2

p(q1, ~o1, . . . , qt = i , ~ot |λ)

The second term, ψt(i), is called a back-pointer. It tells us:

If you find yourself in state i at time t,

. . . what was the most likely previuos state, qt−1?

HMM Recognition Segmentation Viterbi Summary

The Viterbi Algorithm

So, working with the definition
δt(i) ≡ maxq1,...,qt−1 p(q1, ~o1, . . . , qt = i , ~ot |λ), let’s see how we
can actually calculate δt(i).

1 Initialize:

δ1(i) = p(q1 = i , ~o1|λ)

= p(q1 = i |λ)p(~o1|q1 = i , λ)

= πibi (~o1)

ψt(i) = undefined

HMM Recognition Segmentation Viterbi Summary

The Viterbi Algorithm

δt(i) ≡ maxq1,...,qt−1 p(q1, ~o1, . . . , qt = i , ~ot |λ)

1 Initialize:
δ1(i) = πibi (~o1), 1 ≤ i ≤ N

2 Iterate:

δt(j) = max
qt−t

(
max

q1,...,qt−1

(p(q1, ~o1, . . . , qt−1, ~ot−1|λ)×

p(qt = j |qt−1 = i)p(~ot |qt = j)))

=
N

max
i=1

δt−1(i)aijbj(~ot)

ψt(j) =
N

argmax
i=1

δt−1(i)aijbj(~ot)

HMM Recognition Segmentation Viterbi Summary

The Viterbi Algorithm

δt(i) ≡ maxq1,...,qt−1 p(q1, ~o1, . . . , qt = i , ~ot |λ)

1 Initialize:
δ1(i) = πibi (~o1), 1 ≤ i ≤ N

2 Iterate:

δt(j) =
N

max
i=1

δt−1(i)aijbj(~ot), 1 ≤ j ≤ N, 2 ≤ t ≤ T

ψt(j) =
N

argmax
i=1

δt−1(i)aijbj(~ot), 1 ≤ j ≤ N, 2 ≤ t ≤ T

3 Terminate:

max
Q

p(O,Q|λ) =
N

max
i=1

δT (i)

HMM Recognition Segmentation Viterbi Summary

Back-Tracing

Now that we have maxQ p(O,Q|λ), now we need to find

[q∗1 , . . . , q
∗
T] ≡ argmax

Q
p(O,Q|λ)

The algorithm is called “back-tracing.” We start by finding the
most likely final state:

q∗T = argmax
i

δT (i)

. . . and then we just follow the backpointers from there:

q∗t−1 = ψt(q
∗
t), T ≥ t ≥ 2

HMM Recognition Segmentation Viterbi Summary

Visualizing the Viterbi Algorithm using a Trellis

Using a trellis, the initialize step computes probabilities for the
first column of the trellis:

δ1(i) = πibi (~o1), 1 ≤ i ≤ N

HMM Recognition Segmentation Viterbi Summary

Visualizing the Viterbi Algorithm using a Trellis

The iterate step then computes the probability of the best path
to each state in the tth column:

δt(j) =
N

max
i=1

δt−1(i)aijbj(~ot), 1 ≤ j ≤ N, 2 ≤ t ≤ T

HMM Recognition Segmentation Viterbi Summary

Visualizing the Viterbi Algorithm using a Trellis

Back-tracing then finds the most likely final state, and traces
backward, from there, to find the most likely sequence over all:

q∗T = argmax
i

δT (i)

q∗t−1 = ψt(q
∗
t), T ≥ t ≥ 2

HMM Recognition Segmentation Viterbi Summary

Outline

1 Hidden Markov Models

2 Recognition: the Forward Algorithm

3 Segmentation: the Backward Algorithm

4 Segmentation: the Viterbi Algorithm

5 Summary

HMM Recognition Segmentation Viterbi Summary

Hidden Markov Model

1 2 3

~o ~o ~o

a11
a12

a13

b1(~o)

a22

a21

a23

b2(~o)

a33

a32

a31
b3(~o)

1 Start in state qt = i with pmf πi .

2 Generate an observation, ~o, with pdf bi (~o).

3 Transition to a new state, qt+1 = j , according to pmf aij .

4 Repeat.

HMM Recognition Segmentation Viterbi Summary

The Forward Algorithm

Definition: αt(i) ≡ p(~o1, . . . , ~ot , qt = i |λ). Computation:

1 Initialize:
α1(i) = πibi (~o1), 1 ≤ i ≤ N

2 Iterate:

αt(j) =
N∑
i=1

αt−1(i)aijbj(~ot), 1 ≤ j ≤ N, 2 ≤ t ≤ T

3 Terminate:

p(O|λ) =
N∑
i=1

αT (i)

HMM Recognition Segmentation Viterbi Summary

The Backward Algorithm

Definition: βt(i) ≡ p(~ot+1, . . . , ~oT |qt = i , λ). Computation:

1 Initialize:
βT (i) = 1, 1 ≤ i ≤ N

2 Iterate:

βt(i) =
N∑
j=1

aijbj(~ot+1)βt+1(j), 1 ≤ i ≤ N, 1 ≤ t ≤ T − 1

3 Terminate:

p(O|λ) =
N∑
i=1

πibi (~o1)β1(i)

HMM Recognition Segmentation Viterbi Summary

The Viterbi Algorithm

1 Initialize:
δ1(i) = πibi (~o1), 1 ≤ i ≤ N

2 Iterate:

δt(j) =
N

max
i=1

δt−1(i)aijbj(~ot), 1 ≤ j ≤ N, 2 ≤ t ≤ T

ψt(j) =
N

argmax
i=1

δt−1(i)aijbj(~ot), 1 ≤ j ≤ N, 2 ≤ t ≤ T

3 Back-trace:

q∗T = argmax
i

δT (i)

q∗t−1 = ψt(q
∗
t), T ≥ t ≥ 2

	Hidden Markov Models
	Recognition: the Forward Algorithm
	Segmentation: the Backward Algorithm
	Segmentation: the Viterbi Algorithm
	Summary

