1. Hidden Markov Models
2. Recognition: the Forward Algorithm
3. Segmentation: the Backward Algorithm
4. Segmentation: the Viterbi Algorithm
5. Summary
Outline

1. Hidden Markov Models
2. Recognition: the Forward Algorithm
3. Segmentation: the Backward Algorithm
4. Segmentation: the Viterbi Algorithm
5. Summary
The **observation sequence** is a sequence of short-time spectra, or other observation vectors, \(O = [\vec{o}_1, \ldots, \vec{o}_T] \).

The **model parameters**, \(\lambda_y \), are a set of numbers that describe the probability of observing \(O \), given that word \(y \) was produced.

Isolated word recognition is the problem of figuring out which word has the maximum probability, i.e., finding

\[
\operatorname{argmax}_y p(O|\lambda_y) p(y)
\]
Review: Automatic Speech Recognition

Remember that Velichko & Zagoruyko broke down the problem of ASR into two key subproblems:

- **Variable acoustics:** V&Z solved this problem by calculating Euclidean distance using a perceptually-motivated feature vector.

- **Variable duration:** V&Z solved this problem using dynamic time warping.
The hidden Markov model (HMM) solves the same problems, in a more scalable fashion:

- **Variable acoustics:** Instead of storing training examples, the HMM stores a model, λ_y, specifying the probability density function of the short-time spectrum, $\tilde{\sigma}_t$, given the index of the speech sound being produced at that instant, q_t:

$$p(\tilde{\sigma}_t | q_t, \lambda_y)$$

- **Variable duration:** The HMM solves this problem by imagining that each word is composed of a sequence of speech sounds, or “states:” $Q = [q_1, \ldots, q_T]$, and that the likelihood of the word is

$$p(O | \lambda_y) = \sum_Q p(Q, O | \lambda_y)$$
An HMM is a “generative model,” meaning that it models the joint probability $p(Q, O|\lambda)$ using a model of the way in which those data might have been generated. An HMM pretends the following generative process:

1. Start in state $q_t = i$ with pmf $\pi_i = p(q_1 = i)$.
2. Generate an observation, \bar{o}, with pdf $b_i(\bar{o}) = p(\bar{o}|q_t = i)$.
3. Transition to a new state, $q_{t+1} = j$, according to pmf $a_{ij} = p(q_{t+1} = j|q_t = i)$.
4. Repeat.

The model parameters that define any particular word are thus

$$\lambda_y = \{\Pi, A, B\}$$
HMM: Finite State Diagram

1. Start in state $q_t = i$, for some $1 \leq i \leq N$.
2. Generate an observation, \vec{o}, with pdf $b_i(\vec{o})$.
3. Transition to a new state, $q_{t+1} = j$, according to pmf a_{ij}.
4. Repeat steps #2 and #3, T times each.
Solving an HMM is possible if you **carefully keep track of notation**. Here’s standard notation for the parameters:

- $\pi_i = p(q_1 = i)$ is called the **initial state probability**. Let N be the number of different states, so that $1 \leq i \leq N$.

- $a_{ij} = p(q_t = j|q_{t-1} = i)$ is called the **transition probability**, $1 \leq i, j \leq N$.

- $b_j(\vec{o}) = p(\vec{o}_t = \vec{o}|q_t = j)$ is called the **observation probability**. It is usually estimated by a neural network, though Gaussians, GMMs, and even lookup tables are possible.

- λ is the complete set of **model parameters**, including all the π_i’s and a_{ij}’s, and the Gaussian, GMM, or neural net parameters necessary to compute $b_j(\vec{o})$.
The Three Problems for an HMM

1. **Recognition**: Given two different HMMs, λ_1 and λ_2, and an observation sequence O. Which HMM was more likely to have produced O? In other words, is $p(O|\lambda_1) > p(O|\lambda_2)$?

2. **Segmentation**: What is $p(q_t = i|O, \lambda)$?

3. **Training**: Given an initial HMM λ, and an observation sequence O, can we find $\bar{\lambda}$ such that $p(O|\bar{\lambda}) > p(O|\lambda)$?
Outline

1. Hidden Markov Models
2. Recognition: the Forward Algorithm
3. Segmentation: the Backward Algorithm
4. Segmentation: the Viterbi Algorithm
5. Summary
The HMM Recognition Problem

- Given
 - $O = [\vec{o}_1, \ldots, \vec{o}_T]$ and
 - $\lambda = \{\pi_i, a_{ij}, b_j(\vec{o}) \forall i, j\}$,

what is $p(O|\lambda)$?

- Let’s solve a simpler problem first:

- Given
 - $O = [\vec{o}_1, \ldots, \vec{o}_T]$ and
 - $Q = [q_1, \ldots, q_T]$ and
 - $\lambda = \{\pi_i, a_{ij}, b_j(\vec{o}) \forall i, j\}$,

what is $p(O, Q|\lambda)$?
The joint probability of the state sequence and the observation sequence is calculated iteratively, from beginning to end:

- The probability that $q_1 = q_1$ is π_{q_1}.
- Given q_1, the probability of \bar{o}_1 is $b_{q_1}(\bar{o}_1)$.
- Given q_1, the probability of q_2 is $a_{q_1q_2}$.
- ... and so on...

$$p(Q, O|\lambda) = \pi_{q_1} b_{q_1}(\bar{o}_1) \prod_{t=2}^{T} a_{q_{t-1}q_t} b_{q_t}(\bar{o}_t)$$
The probability of the observation sequence, alone, is somewhat harder, because we have to solve this sum:

\[p(O|\lambda) = \sum_{Q} p(Q, O|\lambda) \]

\[= \sum_{q_T=1}^{N} \cdots \sum_{q_1=1}^{N} p(Q, O|\lambda) \]

On the face of it, this calculation seems to have complexity \(\mathcal{O}(N^T) \). So for a very small 100-frame utterance, with only 10 states, we have a complexity of \(\mathcal{O}(10^{100}) \) = one google.
The Forward Algorithm

The solution is to use a kind of dynamic programming algorithm, called “the forward algorithm.” The forward probability is defined as follows:

\[\alpha_t(i) \equiv p(\vec{o}_1, \ldots, \vec{o}_t, q_t = i | \lambda) \]

Obviously, if we can find \(\alpha_t(i) \) for all \(i \) and all \(t \), we will have solved the recognition problem, because

\[
p(O | \lambda) = p(\vec{o}_1, \ldots, \vec{o}_T | \lambda) = \sum_{i=1}^{N} \alpha_T(i)
\]
The Forward Algorithm

So, working with the definition \(\alpha_t(i) \equiv p(\tilde{o}_1, \ldots, \tilde{o}_t, q_t = i | \lambda) \), let’s see how we can actually calculate \(\alpha_t(i) \).

1. **Initialize:**

\[
\alpha_1(i) = p(q_1 = i, \tilde{o}_1 | \lambda) \\
= p(q_1 = i | \lambda)p(\tilde{o}_1 | q_1 = i, \lambda) \\
= \pi_i b_i(\tilde{o}_1)
\]
The Forward Algorithm

Definition: $\alpha_t(i) \equiv p(\vec{o}_1, \ldots, \vec{o}_t, q_t = i | \lambda)$.

1. **Initialize:**

 $\alpha_1(i) = \pi_i b_i(\vec{o}_1), \quad 1 \leq i \leq N$

2. **Iterate:**

 $\alpha_t(j) = p(\vec{o}_1, \ldots, \vec{o}_t, q_t = j | \lambda)$

 $$= \sum_{i=1}^{N} p(\vec{o}_1, \ldots, \vec{o}_{t-1}, q_{t-1} = i) p(q_t = j | q_{t-1} = i) p(\vec{o}_t | q_t = j)$$

 $$= \sum_{i=1}^{N} \alpha_{t-1}(i) a_{ij} b_j(\vec{o}_t)$$
The Forward Algorithm

So, working with the definition $\alpha_t(i) \equiv p(\tilde{o}_1, \ldots, \tilde{o}_t, q_t = i | \lambda)$, let’s see how we can actually calculate $\alpha_t(i)$.

1. **Initialize:**

 $$\alpha_1(i) = \pi_i b_i(\tilde{o}_1), \quad 1 \leq i \leq N$$

2. **Iterate:**

 $$\alpha_t(j) = \sum_{i=1}^{N} \alpha_{t-1}(i) a_{ij} b_j(\tilde{o}_t), \quad 1 \leq j \leq N, \quad 2 \leq t \leq T$$

3. **Terminate:**

 $$p(O|\lambda) = \sum_{i=1}^{N} \alpha_T(i)$$
Visualizing the Forward Algorithm using a Trellis

One way to think about the forward algorithm is by way of a **trellis**. A trellis is a matrix in which each time step is a column, and each row shows a different state. For example, here’s a trellis with $N = 4$ states, and $T = 5$ frames:
Using a trellis, the **initialize** step computes probabilities for the first column of the trellis:

\[\alpha_1(i) = \pi_i b_i(\vec{O}_1), \quad 1 \leq i \leq N \]
The **iterate** step then computes the probabilities in the t^{th} column by adding up the probabilities in the $(t-1)^{st}$ column, each multiplied by the corresponding transition probability:

$$
\alpha_t(j) = \sum_{i=1}^{N} \alpha_{t-1}(i)a_{ij}b_j(\vec{o}_t), \quad 1 \leq j \leq N, \quad 2 \leq t \leq T
$$
Visualizing the Forward Algorithm using a Trellis

The **terminate** step then computes the likelihood of the model by adding the probabilities in the last column:

\[p(O|\lambda) = \sum_{i=1}^{N} \alpha_T(i) \]
Most of the computational complexity is in this step:

- **Iterate:**

\[\alpha_t(j) = \sum_{i=1}^{N} \alpha_{t-1}(i) a_{ij} b_j(\tilde{o}_t), \quad 1 \leq i, j \leq N, \quad 2 \leq t \leq T \]

Its complexity is:

- For each of \(T - 1 \) time steps, \(2 \leq t \leq T \),…
- we need to calculate \(N \) different alpha-variables, \(\alpha_t(j) \), for \(1 \leq j \leq N \),…
- each of which requires a summation with \(N \) terms.

So the total complexity is \(\mathcal{O} \{ TN^2 \} \). For example, with \(N = 10 \) and \(T = 100 \), the complexity is only \(TN^2 = 10,000 \) multiplies (much, much less than \(N^T \))
Outline

1. Hidden Markov Models

2. Recognition: the Forward Algorithm

3. Segmentation: the Backward Algorithm

4. Segmentation: the Viterbi Algorithm

5. Summary
The Segmentation Problem

There are different ways to define the segmentation problem. Let’s define it this way:

- We want to find the most likely state, \(q_t = i \), at time \(t \),…
- given knowledge of the *entire* sequence \(O = [\vec{o}_1, \ldots, \vec{o}_T] \), not just the current observation. So for example, we don’t want to recognize state \(i \) at time \(t \) if the surrounding observations, \(\vec{o}_{t-1} \) and \(\vec{o}_{t+1} \), make it obvious that this choice is impossible. Also,…
- given knowledge of the HMM that produced this sequence, \(\lambda \).

In other words, we want to find the **state posterior probability**, \(p(q_t = i | O, \lambda) \). Let’s define some more notation for the state posterior probability, let’s call it

\[
\gamma_t(i) = p(q_t = i | O, \lambda)
\]
Suppose we already knew the joint probability, \(p(O, q_t = i \mid \lambda) \). Then we could find the state posterior using Bayes’ rule:

\[
\gamma_t(i) = p(q_t = i \mid O, \lambda) = \frac{p(O, q_t = i \mid \lambda)}{\sum_{j=1}^{N} p(O, q_t = j \mid \lambda)}
\]
Let’s expand this:

$$p(O, q_t = i | \lambda) = p(q_t = i, \tilde{\sigma}_1, \ldots, \tilde{\sigma}_T | \lambda)$$

We already know about half of that:

$$\alpha_t(i) = p(q_t = i, \tilde{\sigma}_1, \ldots, \tilde{\sigma}_t | \lambda).$$

We’re only missing this part:

$$p(O, q_t = i | \lambda) = \alpha_t(i)p(\tilde{\sigma}_{t+1}, \ldots, \tilde{\sigma}_T | q_t = i, \lambda)$$

Again, let’s try the trick of “solve the problem by inventing new notation.” Let’s define

$$\beta_t(i) \equiv p(\tilde{\sigma}_{t+1}, \ldots, \tilde{\sigma}_T | q_t = i, \lambda)$$
Now let’s use the definition $\beta_t(i) \equiv p(\vec{o}_{t+1}, \ldots, \vec{o}_T | q_t = i, \lambda)$, and see how we can compute that.

1. **Initialize:**

$$\beta_T(i) = 1, \quad 1 \leq i \leq N$$

This might not seem immediately obvious, but think about it. Given that there are no more \vec{o} vectors after time T, what is the probability that there are no more \vec{o} vectors after time T? Well, 1, obviously.
The Backward Algorithm

Now let’s use the definition $\beta_t(i) \equiv p(\vec{o}_{t+1}, \ldots, \vec{o}_T | q_t = i, \lambda)$, and see how we can compute that.

1. **Initialize:**

 $$\beta_T(i) = 1, \ 1 \leq i \leq N$$

2. **Iterate:**

 $$\beta_t(i) = p(\vec{o}_{t+1}, \ldots, \vec{o}_T | q_t = i, \lambda)$$

 $$= \sum_{j=1}^{N} p(q_{t+1} = j | q_t = i) p(\vec{o}_{t+1} | q_{t+1} = j) p(\vec{o}_{t+2}, \ldots, \vec{o}_T | q_{t+1} = j)$$

 $$= \sum_{j=1}^{N} a_{ij} b_j(\vec{o}_{t+1}) \beta_{t+1}(j)$$
The Backward Algorithm

Now let’s use the definition $\beta_t(i) \equiv p(\tilde{\sigma}_{t+1}, \ldots, \tilde{\sigma}_T | q_t = i, \lambda)$, and see how we can compute that.

1. **Initialize:**

 $$\beta_T(i) = 1, \quad 1 \leq i \leq N$$

2. **Iterate:**

 $$\beta_t(i) = \sum_{j=1}^{N} a_{ij} b_j(\tilde{\sigma}_{t+1}) \beta_{t+1}(j), \quad 1 \leq i \leq N, \quad 1 \leq t \leq T - 1$$

3. **Terminate:**

 $$p(O | \lambda) = \sum_{i=1}^{N} \pi_i b_i(\tilde{\sigma}_1) \beta_1(i)$$
The Backward Algorithm: Computational Complexity

Most of the computational complexity is in this step:

- **Iterate:**
 \[\beta_t(i) = \sum_{j=1}^{N} a_{ij} b_j(\tilde{\sigma}_{t+1}) \beta_{t+1}(j), \quad 1 \leq i \leq N, \quad 2 \leq t \leq T \]

Its complexity is:

- For each of \(T - 1 \) time steps, \(1 \leq t \leq T - 1, \ldots \)
- we need to calculate \(N \) different beta-variables, \(\beta_t(i) \), for \(1 \leq i \leq N, \ldots \)
- each of which requires a summation with \(N \) terms.

So the total complexity is \(O\{TN^2\} \).
Use Bayes' Rule

The segmentation probability is then

\[\gamma_t(i) = \frac{p(O, q_t = i|\lambda)}{\sum_{k=1}^{N} p(O, q_t = k|\lambda)} \]

\[= \frac{p(\vec{o}_1, \ldots, \vec{o}_t, q_t = i|\lambda)p(\vec{o}_{t+1}, \ldots, \vec{o}_T|q_t = i, \lambda)}{\sum_{k=1}^{N} p(\vec{o}_1, \ldots, \vec{o}_t, q_t = k|\lambda)p(\vec{o}_{t+1}, \ldots, \vec{o}_T|q_t = k, \lambda)} \]

\[= \frac{\alpha_t(i)\beta_t(i)}{\sum_{k=1}^{N} \alpha_t(k)\beta_t(k)} \]
Segmentation: The Backward Algorithm

In summary, we now have three new probabilities, all of which can be computed in $O\{TN^2\}$ time:

1. **The Backward Probability:**

 $$\beta_t(i) = p(\mathbf{\tilde{o}}_{t+1}, \ldots, \mathbf{\tilde{o}}_T | q_t = i, \lambda)$$

2. **The State Posterior:**

 $$\gamma_t(i) = p(q_t = i | O, \lambda) = \frac{\alpha_t(i)\beta_t(i)}{\sum_{k=1}^{N} \alpha_t(k)\beta_t(k)}$$

3. **The Segment Posterior:**

 $$\xi_t(i, j) = p(q_t = i, q_{t+1} = j | O, \lambda) = \frac{\alpha_t(i)a_{ij}b_j(\mathbf{\tilde{o}}_{t+1})\beta_{t+1}(j)}{\sum_{k=1}^{N} \sum_{\ell=1}^{N} \alpha_t(k)a_{k\ell}b_{\ell}(\mathbf{\tilde{o}}_{t+1})\beta_{t+1}(\ell)}$$
Outline

1. Hidden Markov Models
2. Recognition: the Forward Algorithm
3. Segmentation: the Backward Algorithm
4. Segmentation: the Viterbi Algorithm
5. Summary
Using the forward-backward algorithm, we can find $p(q_t = i \mid O, \lambda)$.

Suppose we want to know all of the states, $Q = [q_1, \ldots, q_T]$. Notice that

$$p(q_1, \ldots, q_T \mid O, \Lambda) \neq \prod_{t=1}^{T} p(q_t \mid O, \Lambda)$$

For example, the maximizer of the RHS might be an impossible state sequence: $q_t = i$ and $q_{t+1} = j$ might be individually likely, but $p(q_{t+1} = j \mid q_t = i)$ might be 0!

In order to find $p(q_1, \ldots, q_T \mid O, \lambda)$, we need a different algorithm.
Viterbi Algorithm

Since the method of “solve a problem by defining new variables” is working so well for us, let’s try it again. Define

$$\delta_t(i) \equiv \max_{q_1, \ldots, q_{t-1}} p(q_1, \bar{o}_1, \ldots, q_t = i, \bar{o}_t | \lambda)$$

$$\psi_t(i) \equiv \arg\max_{q_{t-1}} \max_{q_1, \ldots, q_{t-2}} p(q_1, \bar{o}_1, \ldots, q_t = i, \bar{o}_t | \lambda)$$

The second term, $\psi_t(i)$, is called a back-pointer. It tells us:

- If you find yourself in state i at time t,
- ...what was the most likely previous state, q_{t-1}?
So, working with the definition
\[\delta_t(i) \equiv \max_{q_1, \ldots, q_{t-1}} p(q_1, \tilde{o}_1, \ldots, q_t = i, \tilde{o}_t | \lambda), \]
let’s see how we can actually calculate \[\delta_t(i) \].

1. **Initialize:**

 \[\delta_1(i) = p(q_1 = i, \tilde{o}_1 | \lambda) = p(q_1 = i | \lambda)p(\tilde{o}_1 | q_1 = i, \lambda) = \pi_i b_i(\tilde{o}_1) \]

 \[\psi_t(i) = \text{undefined} \]
The Viterbi Algorithm

\[\delta_t(i) \equiv \max_{q_1, \ldots, q_{t-1}} p(q_1, \bar{\sigma}_1, \ldots, q_t = i, \bar{\sigma}_t | \lambda) \]

1 Initialize:

\[\delta_1(i) = \pi_i b_i(\bar{\sigma}_1), \quad 1 \leq i \leq N \]

2 Iterate:

\[\delta_t(j) = \max_{q_{t-1}} \left(\max_{q_1, \ldots, q_{t-1}} (p(q_1, \bar{\sigma}_1, \ldots, q_{t-1}, \bar{\sigma}_{t-1} | \lambda) \times p(q_t = j | q_{t-1} = i)) \right) \]

\[= \max_{i=1}^N \delta_{t-1}(i) a_{ij} b_j(\bar{\sigma}_t) \]

\[\psi_t(j) = \arg\max_{i=1}^N \delta_{t-1}(i) a_{ij} b_j(\bar{\sigma}_t) \]
The Viterbi Algorithm

\[\delta_t(i) \equiv \max_{q_1, \ldots, q_{t-1}} p(q_1, \tilde{o}_1, \ldots, q_t = i, \tilde{o}_t | \lambda) \]

1. **Initialize:**
 \[\delta_1(i) = \pi_i b_i(\tilde{o}_1), \quad 1 \leq i \leq N \]

2. **Iterate:**
 \[\delta_t(j) = \max_{i=1}^{N} \delta_{t-1}(i) a_{ij} b_j(\tilde{o}_t), \quad 1 \leq j \leq N, \quad 2 \leq t \leq T \]
 \[\psi_t(j) = \arg\max_{i=1}^{N} \delta_{t-1}(i) a_{ij} b_j(\tilde{o}_t), \quad 1 \leq j \leq N, \quad 2 \leq t \leq T \]

3. **Terminate:**
 \[\max_Q p(O, Q | \lambda) = \max_{i=1}^{N} \delta_T(i) \]
Now that we have $\max_Q p(O, Q|\lambda)$, now we need to find

$$[q_1^*, \ldots, q_T^*] \equiv \underset{Q}{\arg\max} p(O, Q|\lambda)$$

The algorithm is called “back-tracing.” We start by finding the most likely final state:

$$q_T^* = \underset{i}{\arg\max} \delta_T(i)$$

... and then we just follow the backpointers from there:

$$q_{t-1}^* = \psi_t(q_t^*), \quad T \geq t \geq 2$$
Using a trellis, the **initialize** step computes probabilities for the first column of the trellis:

$$\delta_1(i) = \pi_i b_i(\bar{\sigma}_1), \quad 1 \leq i \leq N$$
Visualizing the Viterbi Algorithm using a Trellis

The iterate step then computes the probability of the best path to each state in the \(t^{th} \) column:

\[
\delta_t(j) = \max_{i=1}^{N} \delta_{t-1}(i) a_{ij} b_j(\vec{o}_t), \quad 1 \leq j \leq N, \quad 2 \leq t \leq T
\]
Visualizing the Viterbi Algorithm using a Trellis

Back-tracing then finds the most likely final state, and traces backward, from there, to find the most likely sequence over all:

$$q^*_T = \arg\max_i \delta_T(i)$$

$$q^*_{t-1} = \psi_t(q^*_t), \quad T \geq t \geq 2$$
Outline

1. Hidden Markov Models
2. Recognition: the Forward Algorithm
3. Segmentation: the Backward Algorithm
4. Segmentation: the Viterbi Algorithm
5. Summary
1. Start in state $q_t = i$ with pmf π_i.
2. Generate an observation, $\bar{\sigma}$, with pdf $b_i(\bar{\sigma})$.
3. Transition to a new state, $q_{t+1} = j$, according to pmf a_{ij}.
4. Repeat.
The Forward Algorithm

Definition: $\alpha_t(i) \equiv p(\tilde{o}_1, \ldots, \tilde{o}_t, q_t = i|\lambda)$. Computation:

1. **Initialize:**

 $$\alpha_1(i) = \pi_i b_i(\tilde{o}_1), \quad 1 \leq i \leq N$$

2. **Iterate:**

 $$\alpha_t(j) = \sum_{i=1}^{N} \alpha_{t-1}(i) a_{ij} b_j(\tilde{o}_t), \quad 1 \leq j \leq N, \quad 2 \leq t \leq T$$

3. **Terminate:**

 $$p(O|\lambda) = \sum_{i=1}^{N} \alpha_T(i)$$
The Backward Algorithm

Definition: \(\beta_t(i) \equiv p(\tilde{o}_{t+1}, \ldots, \tilde{o}_T | q_t = i, \lambda) \). Computation:

1. **Initialize:**
 \[
 \beta_T(i) = 1, \quad 1 \leq i \leq N
 \]

2. **Iterate:**
 \[
 \beta_t(i) = \sum_{j=1}^{N} a_{ij} b_j(\tilde{o}_{t+1}) \beta_{t+1}(j), \quad 1 \leq i \leq N, \quad 1 \leq t \leq T - 1
 \]

3. **Terminate:**
 \[
 p(O|\lambda) = \sum_{i=1}^{N} \pi_i b_i(\tilde{o}_1) \beta_1(i)
 \]
The Viterbi Algorithm

1. **Initialize:**
 \[\delta_1(i) = \pi_i b_i(\vec{o}_1), \quad 1 \leq i \leq N \]

2. **Iterate:**
 \[\delta_t(j) = \max_{i=1}^{N} \delta_{t-1}(i) a_{ij} b_j(\vec{o}_t), \quad 1 \leq j \leq N, \quad 2 \leq t \leq T \]
 \[\psi_t(j) = \arg\max_{i=1}^{N} \delta_{t-1}(i) a_{ij} b_j(\vec{o}_t), \quad 1 \leq j \leq N, \quad 2 \leq t \leq T \]

3. **Back-trace:**
 \[q_T^* = \arg\max_i \delta_T(i) \]
 \[q_{t-1}^* = \psi_t(q_t^*), \quad T \geq t \geq 2 \]