Quantizing the Residual	One-Bit	Center-Clipping	Tree-Based	MPLPC	CELP	Conclusions

Lecture 13: Predictive Coding of Speech at Low Bit Rates, part 3

Mark Hasegawa-Johnson

ECE 537: Speech Processing, Fall 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Quantizing the Residual	One-Bit	Center-Clipping	Tree-Based	MPLPC	CELP	Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- One Bit Per Sample
- 3 Adaptive Center Clipping
- 4 Tree-Based Coding
- 5 Multi-Pulse LPC (Atal and Remde, 1982)
- 6 Code-Excited LPC (Schroeder and Atal, 1985)

Quantizing the Residual	One-Bit	Center-Clipping	Tree-Based	MPLPC	CELP	Conclusions
●○○○	000		00000000	000000	00000	00
Outline						

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Quantizing the Residual
- 2 One Bit Per Sample
- 3 Adaptive Center Clipping
- Tree-Based Coding
- 5 Multi-Pulse LPC (Atal and Remde, 1982)
- 6 Code-Excited LPC (Schroeder and Atal, 1985)

Quantizing the Residual ○●00	One-Bit 000	Center-Clipping	Tree-Based	MPLPC 000000	CELP 00000	Conclusions 00
What's the I	Error Sp	ectrum?				

$$q[n] = s[n] - \sum_{k=1}^{M+p+1} \alpha_k \hat{s}[n-k]$$
$$\hat{q}[n] = q[n] + \epsilon[n]$$
$$\hat{s}[n] = \hat{q}[n] + \sum_{k=1}^{M+p+1} \alpha_k \hat{s}[n-k]$$
$$= s[n] + \epsilon[n],$$

where

• $\epsilon[n]$ is a random error, uniformly distributed between $-\frac{\Delta}{2}$ and $\frac{\Delta}{2}$, where Δ is the quantizer step size.

- If the quantizer step size is small enough, then $\epsilon[n]$ is uncorrelated with $\epsilon[n m]$.
- In other words, $\epsilon[n]$ is white noise!

The structure above shapes the noise by $\frac{1}{|1-R(e^{j\omega})|^2}$:

$$Y(z) = (1 - R(z))S(z)$$
$$\hat{y}[n] = y[n] + \epsilon[n]$$
$$\hat{S}(z) - S(z) = \frac{1}{1 - R(z)}\epsilon(z)$$
$$E\left[\left|\hat{S}(e^{j\omega}) - S(e^{j\omega})\right|^2\right] = \left|\frac{1}{1 - R(e^{j\omega})}\right|^2$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- One bit per sample
- Adaptive center clipping
- Tree-based lookahead
- Multi-pulse LPC
- CELP (Code excited LPC)

Quantizing the Residual	One-Bit ●○○	Center-Clipping	Tree-Based 00000000	MPLPC 000000	CELP 00000	Conclusions 00
Outline						

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Quantizing the Residual
- 2 One Bit Per Sample
- 3 Adaptive Center Clipping
- Tree-Based Coding
- 5 Multi-Pulse LPC (Atal and Remde, 1982)
- 6 Code-Excited LPC (Schroeder and Atal, 1985)

1.70

1.72

center-clipping threshold

- (c) Quantized residual, $\hat{q}[n]$
- (d) Reconstructed $\hat{d}[n]$
- (e) Original d[n]
- (f) Reconstructed $\hat{s}[n]$

(g) Original s[n]

1.74

1.78

1.76 TIME (SEC)

Quantizing the Residual	One-Bit ○0●	Center-Clipping	Tree-Based 00000000	MPLPC 000000	CELP 00000	Conclusions
Bit Rate						

 $F_s = 8000$ Hz, so this coder uses 8000 bits/second for the residual, plus information about the predictor coefficients.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Quantizing the Residual	One-Bit	Center-Clipping	Tree-Based	MPLPC	CELP	Conclusions
	000	●○○○	00000000	000000	00000	00
Outline						

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Quantizing the Residual
- 2 One Bit Per Sample
- 3 Adaptive Center Clipping
- Tree-Based Coding
- 5 Multi-Pulse LPC (Atal and Remde, 1982)
- 6 Code-Excited LPC (Schroeder and Atal, 1985)

- Observation: high-amplitude samples of *q*[*n*] have a much bigger perceptual impact than low-amplitude samples.
- Strategy:
 - Samples smaller than a threshold are set to zero
 - Samples larger than the threshold are quantized with \sim 8 different quantization levels

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Each 10-bit code-word specifies the number of zero-valued samples (0-127: 7 bits), and the amplitude of the next non-zero sample (3 bits)

Quantizing the Residual	One-Bit	Center-Clipping	Tree-Based	MPLPC	CELP	Conclusions
	000	○○○●	00000000	000000	00000	00
Bit Rate						

Example in the article uses 5.6 kbps for the residual, to code an 8000 samples/second signal.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Quantizing the Residual	One-Bit 000	Center-Clipping	Tree-Based ●○○○○○○○	MPLPC 000000	CELP 00000	Conclusions
Outline						

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Quantizing the Residual
- 2 One Bit Per Sample
- 3 Adaptive Center Clipping
- Tree-Based Coding
- 5 Multi-Pulse LPC (Atal and Remde, 1982)
- 6 Code-Excited LPC (Schroeder and Atal, 1985)

- The encoder calculates the best possible LPC excitation sequence $\hat{q}[n]$, and sends it to the decoder.
- Why should $\hat{q}[n]$ be related to the LPC analysis residual?
- Why not just find the excitation sequence that minimizes $\hat{y}[n] y[n]$?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Quantizing the Residual	One-Bit 000	Center-Clipping	Tree-Based ○00●0000	MPLPC 000000	CELP 00000	Conclusions 00
Latency						

- The synthesis filter, $\left(\frac{1}{1-P_d(z)}\right)\left(\frac{1}{1-P_s(s)}\right)$, is IIR.
- v[n] therefore has a strong effect on samples ŝ[n + L] for pretty long L, at least dozens of samples.

• It's necessary to use some kind of lookahead.

Quantizing the Residual	One-Bit	Center-Clipping	Tree-Based	MPLPC	CELP	Conclusions
			00000000			

- Fill a tree with pseudo-random numbers, in a sequence that is known to both encoder and decoder.
- Assume that the best M paths are known up to level L - 1.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Quantizing the Residual	One-Bit 000	Center-Clipping	Tree-Based ○○○○○●○○	MPLPC 000000	CELP 00000	Conclusions 00

- From each level-(L 1) path, test 2 paths to level-L, thus there are a total of 2M paths.
- Set v[n],..., v[n + L − 1] equal to numbers on a path.
- $E = \sum_{m=n}^{n+L-1} (\hat{y}[n] y[n])^2$.
- Choose the path with minimum *E*.
- Transmit its first bit.
- Repeat.

Fig. 25. Example of the waveforms of original and coded speech signals using a binary tree (1 bit/sample) with M = 64 and L = 60.

Quantizing the Residual	One-Bit 000	Center-Clipping	Tree-Based ○○○○○○●	MPLPC 000000	CELP 00000	Conclusions 00
Bit Rate						

One bit per sample, thus 8 kbps plus the bits required for predictor coefficients.

Quantizing the Residual	One-Bit	Center-Clipping	Tree-Based	MPLPC	CELP	Conclusions
	000	0000	00000000	●00000	00000	00
Outline						

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Quantizing the Residual
- 2 One Bit Per Sample
- 3 Adaptive Center Clipping
- Tree-Based Coding
- 5 Multi-Pulse LPC (Atal and Remde, 1982)
- 6 Code-Excited LPC (Schroeder and Atal, 1985)

Multi Dulco			00000000	000000	00000	00
Quantizing the Residual	One-Bit	Center-Clipping	Tree-Based	MPLPC	CELP	Conclusions

In every L-sample frame,

$$v[n] = \sum_{m=1}^{M} g_m \delta[n - d_m],$$

where $M \ll L$; (d_m, g_m) are the position and scale of the m^{th} pulse.

Multi Dulce I	PC	0000	0000000		00000	00
Quantizing the Residual	One-Bit	Center-Clipping	Tree-Based	MPLPC	CELP	Conclusions

If you feed the signal $\delta[n-d]$ to the predictor filters $H(z) = \left(\frac{1}{1-P_d(z)}\right) \left(\frac{1}{1-P_s(z)}\right)$, the result is the delayed impuse response:

$$\delta[n-d] \stackrel{\mathcal{H}}{\longrightarrow} h[n-d]$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Quantizing the Residual	One-Bit 000	Center-Clipping	Tree-Based 00000000	MPLPC ○oooo●o	CELP 00000	Conclusions 00
Multi-Pulse L	.PC					

- For $1 \le m \le M$:
 - For $1 \le d \le L$:

$$\gamma_d = \frac{\sum_n y[n]h[n-d]}{\sum_n h^2[n-d]}$$

$$\epsilon_d = \sum_n (y[n] - \gamma_d h[n-d])^2$$

$$d_m = \operatorname*{argmin}_d \epsilon_d$$

 $g_m = \gamma_{d_m}$

Quantizing the Residual	One-Bit	Center-Clipping	Tree-Based	MPLPC	CELP	Conclusions
0000	000	0000	00000000	00000	00000	00

Copyright IEEE, permission granted for academic use: Atal and Remde, "A New Model of LPC Excitation for

Producing Natural-Sounding Speech at Low Bit Rates," 1982, Fig. 6

Quantizing the Residual	One-Bit 000	Center-Clipping	Tree-Based	MPLPC 000000	CELP •0000	Conclusions 00
Outline						

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Quantizing the Residual
- 2 One Bit Per Sample
- 3 Adaptive Center Clipping
- Tree-Based Coding
- 5 Multi-Pulse LPC (Atal and Remde, 1982)
- 6 Code-Excited LPC (Schroeder and Atal, 1985)

Quantizing the Residual	One-Bit 000	Center-Clipping	Tree-Based 00000000	MPLPC 000000	CELP ○o●oo	Conclusions
Code-Excited	LPC					

- Generate a "codebook" containing 1024 different pseudo-random 5ms sequences, v[n].
- Choose the one that minimizes the error.

Copyright IEEE, permission granted for academic use:

Schroeder & Atal, 1985, Fig. 6(a)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Quantizing the Residual	One-Bit 000	Center-Clipping	Tree-Based 00000000	MPLPC 000000	CELP ○OO●O	Conclusions

Schroeder & Atal (1985), Figure 18:

- (a) Original *s*[*n*]
- (b) Synthetic $\hat{s}[n]$
- (c) Original d[n]
- (d) Synthetic $\hat{d}[n]$
- (e) Original v[n]
- (f) Synthetic $\hat{v}[n]$

Copyright IEEE, permission granted for academic use:

Schroeder & Atal, 1985, Fig. 4

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Quantizing the Residual	One-Bit 000	Center-Clipping	Tree-Based 00000000	MPLPC 000000	CELP ○OOO●	Conclusions 00
Bit Rate						

10 bits per 5ms, thus 2 kbps plus predictor coefficients.

Quantizing the Residual	One-Bit 000	Center-Clipping	Tree-Based 00000000	MPLPC 000000	CELP 00000	Conclusions ●○
Outline						

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Quantizing the Residual
- 2 One Bit Per Sample
- 3 Adaptive Center Clipping
- Tree-Based Coding
- 5 Multi-Pulse LPC (Atal and Remde, 1982)
- 6 Code-Excited LPC (Schroeder and Atal, 1985)

Quantizing the Residual	One-Bit 000	Center-Clipping	Tree-Based 00000000	MPLPC 000000	CELP 00000	Conclusions ○●
Conclusions						

- Adaptive center-clipping: use bits to code the high-amplitude samples.
- Multi-pulse LPC: build up v[n] one impulse at a time.
- Tree-coding and CELP: Just find the excitation that gives the best speech, who cares whether or not it's related to the true LPC residual.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ