Lecture 13: Predictive Coding of Speech at Low Bit Rates, part 3

Mark Hasegawa-Johnson

ECE 537: Speech Processing, Fall 2022
1. Quantizing the Residual

2. One Bit Per Sample

3. Adaptive Center Clipping

4. Tree-Based Coding

5. Multi-Pulse LPC (Atal and Remde, 1982)

6. Code-Excited LPC (Schroeder and Atal, 1985)

7. Conclusions
Outline

1. Quantizing the Residual
2. One Bit Per Sample
3. Adaptive Center Clipping
4. Tree-Based Coding
5. Multi-Pulse LPC (Atal and Remde, 1982)
6. Code-Excited LPC (Schroeder and Atal, 1985)
7. Conclusions
What’s the Error Spectrum?

\[q[n] = s[n] - \sum_{k=1}^{M+p+1} \alpha_k \hat{s}[n - k] \]

\[\hat{q}[n] = q[n] + \epsilon[n] \]

\[\hat{s}[n] = \hat{q}[n] + \sum_{k=1}^{M+p+1} \alpha_k \hat{s}[n - k] \]

\[= s[n] + \epsilon[n], \]

where

- \(\epsilon[n] \) is a random error, uniformly distributed between \(-\frac{\Delta}{2} \) and \(\frac{\Delta}{2} \), where \(\Delta \) is the quantizer step size.
- If the quantizer step size is small enough, then \(\epsilon[n] \) is uncorrelated with \(\epsilon[n - m] \).
- In other words, \(\epsilon[n] \) is white noise!
The structure above shapes the noise by \(\frac{1}{|1-R(e^{j\omega})|^2} \):

\[
Y(z) = (1 - R(z))S(z)
\]

\[
\hat{y}[n] = y[n] + \epsilon[n]
\]

\[
\hat{S}(z) - S(z) = \frac{1}{1 - R(z)}\epsilon(z)
\]

\[
E \left[\left| \hat{S}(e^{j\omega}) - S(e^{j\omega}) \right|^2 \right] = \left| \frac{1}{1 - R(e^{j\omega})} \right|^2
\]
Strategies for Quantizing the Prediction Residual

- One bit per sample
- Adaptive center clipping
- Tree-based lookahead
- Multi-pulse LPC
- CELP (Code excited LPC)
Outline

1. Quantizing the Residual
2. One Bit Per Sample
3. Adaptive Center Clipping
4. Tree-Based Coding
5. Multi-Pulse LPC (Atal and Remde, 1982)
6. Code-Excited LPC (Schroeder and Atal, 1985)
7. Conclusions
Atal (1982), Figure 14:
(a) Prediction residual, $v[n]$, w/frame-wise center-clipping threshold
(b) Quantizer input, $q[n]$, w/sample-wise center-clipping threshold
(c) Quantized residual, $\hat{q}[n]$
(d) Reconstructed $\hat{d}[n]$
(e) Original $d[n]$
(f) Reconstructed $\hat{s}[n]$
(g) Original $s[n]$
Bit Rate

\[F_s = 8000 \text{Hz}, \text{ so this coder uses 8000 bits/second for the residual, plus information about the predictor coefficients.} \]
Outline

1. Quantizing the Residual
2. One Bit Per Sample
3. Adaptive Center Clipping
4. Tree-Based Coding
5. Multi-Pulse LPC (Atal and Remde, 1982)
6. Code-Excited LPC (Schroeder and Atal, 1985)
7. Conclusions
Observation: high-amplitude samples of $q[n]$ have a much bigger perceptual impact than low-amplitude samples.

Strategy:
- Samples smaller than a threshold are set to zero
- Samples larger than the threshold are quantized with ~ 8 different quantization levels

Each 10-bit code-word specifies the number of zero-valued samples (0-127: 7 bits), and the amplitude of the next non-zero sample (3 bits)
Atal (1982), Figure 18:
(a) Prediction residual, $v[n]$, w/frame-wise center-clipping threshold
(b) Quantizer input, $q[n]$, w/sample-wise center-clipping threshold
(c) Quantized residual, $\hat{q}[n]$
(d) Reconstructed $\hat{d}[n]$
(e) Original $d[n]$
(f) Reconstructed $\hat{s}[n]$
(g) Original $s[n]$
Example in the article uses 5.6 kbps for the residual, to code an 8000 samples/second signal.
Outline

1. Quantizing the Residual
2. One Bit Per Sample
3. Adaptive Center Clipping
4. Tree-Based Coding
5. Multi-Pulse LPC (Atal and Remde, 1982)
6. Code-Excited LPC (Schroeder and Atal, 1985)
7. Conclusions
Why should $\hat{q}[n]$ be related to $q[n]$?

- The encoder calculates the best possible LPC excitation sequence $\hat{q}[n]$, and sends it to the decoder.
- Why should $\hat{q}[n]$ be related to the LPC analysis residual?
- Why not just find the excitation sequence that minimizes $\hat{y}[n] - y[n]$?
Quantizing the Residual
One-Bit Center-Clipping Tree-Based MPLPC CELP Conclusions

Diagram Description

1. **Input:** Original Speech Signal
2. **Transmitter:**
 - Code Selection
 - Code Generator
 - Path Map
 - Digital Channel
 - Sigma (σ) Addition
 - vn
 - Predicators Pd and Ps
3. **Receiver:**
 - Code Generator
 - Sigma (σ) Addition
 - vn
 - Predicators Pd and Ps
4. **Output:** Speech
5. **Error:** Filter (1 - R)

Legend:
- **TRANSMITTER**
- **RECEIVER**
- **ERROR WEIGHTING FILTER (1 - R)**
- **Path Map**
- **Code Generator**
- **Digital Channel**
- **Predicators Pd and Ps**
- **Code Selection**
• The synthesis filter, \(\left(\frac{1}{1 - P_d(z)} \right) \left(\frac{1}{1 - P_s(s)} \right) \), is IIR.

• \(v[n] \) therefore has a strong effect on samples \(\hat{s}[n + L] \) for pretty long \(L \), at least dozens of samples.

• It’s necessary to use some kind of lookahead.
• Fill a tree with pseudo-random numbers, in a sequence that is known to both encoder and decoder.

• Assume that the best M paths are known up to level $L - 1$.

![Tree Diagram](image)
• From each level-\((L - 1)\) path, test 2 paths to level-\(L\), thus there are a total of \(2M\) paths.

• Set \(v[n], \ldots, v[n + L - 1]\) equal to numbers on a path.

• \(E = \sum_{m=n}^{n+L-1} (\hat{y}[n] - y[n])^2\).

• Choose the path with minimum \(E\).

• Transmit its first bit.

• Repeat.
Fig. 25. Example of the waveforms of original and coded speech signals using a binary tree (1 bit/sample) with $M = 64$ and $L = 60$.
One bit per sample, thus 8 kbps plus the bits required for predictor coefficients.
Outline

1. Quantizing the Residual
2. One Bit Per Sample
3. Adaptive Center Clipping
4. Tree-Based Coding
5. Multi-Pulse LPC (Atal and Remde, 1982)
6. Code-Excited LPC (Schroeder and Atal, 1985)
7. Conclusions
Atal (1982), Figure 18:
(a) Prediction residual, $v[n]$, w/frame-wise center-clipping threshold
(b) Quantizer input, $q[n]$, w/sample-wise center-clipping threshold
(c) Quantized residual, $\hat{q}[n]$
(d) Reconstructed $\hat{d}[n]$
(e) Original $d[n]$
(f) Reconstructed $\hat{s}[n]$
(g) Original $s[n]
In every L-sample frame,

$$v[n] = \sum_{m=1}^{M} g_m \delta[n - d_m],$$

where $M \ll L$; (d_m, g_m) are the position and scale of the m^{th} pulse.
If you feed the signal $\delta[n - d]$ to the predictor filters $H(z) = \left(\frac{1}{1-P_d(z)}\right) \left(\frac{1}{1-P_s(z)}\right)$, the result is the delayed impulse response:

$$\delta[n - d] \xrightarrow{H} h[n - d]$$
Multi-Pulse LPC

- For $1 \leq m \leq M$:
 - For $1 \leq d \leq L$:
 \[
 \gamma_d = \frac{\sum_n y[n] h[n - d]}{\sum_n h^2[n - d]}
 \]
 \[
 \epsilon_d = \sum_n (y[n] - \gamma_d h[n - d])^2
 \]
 - Set
 \[
 d_m = \arg\min_d \epsilon_d
 \]
 \[
 g_m = \gamma_{d_m}
 \]
Copyright IEEE, permission granted for academic use: Atal and Remde, “A New Model of LPC Excitation for Producing Natural-Sounding Speech at Low Bit Rates,” 1982, Fig. 6
Outline

1. Quantizing the Residual
2. One Bit Per Sample
3. Adaptive Center Clipping
4. Tree-Based Coding
5. Multi-Pulse LPC (Atal and Remde, 1982)
6. Code-Excited LPC (Schroeder and Atal, 1985)
7. Conclusions
Code-Excited LPC

- Generate a “codebook” containing 1024 different pseudo-random 5ms sequences, $v[n]$.
- Choose the one that minimizes the error.

Copyright IEEE, permission granted for academic use:

Schroeder & Atal, 1985, Fig. 6(a)
Schroeder & Atal (1985), Figure 18:
(a) Original \(s[n] \)
(b) Synthetic \(\hat{s}[n] \)
(c) Original \(d[n] \)
(d) Synthetic \(\hat{d}[n] \)
(e) Original \(v[n] \)
(f) Synthetic \(\hat{v}[n] \)

Copyright IEEE, permission granted for academic use:
Schroeder & Atal, 1985, Fig. 4
10 bits per 5ms, thus 2 kbps plus predictor coefficients.
Outline

1. Quantizing the Residual
2. One Bit Per Sample
3. Adaptive Center Clipping
4. Tree-Based Coding
5. Multi-Pulse LPC (Atal and Remde, 1982)
6. Code-Excited LPC (Schroeder and Atal, 1985)
7. Conclusions
Conclusions

- Adaptive center-clipping: use bits to code the high-amplitude samples.
- Multi-pulse LPC: build up $v[n]$ one impulse at a time.
- Tree-coding and CELP: Just find the excitation that gives the best speech, who cares whether or not it’s related to the true LPC residual.