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Review: LPC

Inverse filter:

H(z) =
C1

1− p1z−1
+

C ∗1
1− p∗1z

−1

h[n] = C1p
n
1u[n] + C ∗1 (p∗1)nu[n]

Orthogonality principle: ak minimizes

N+p∑
n=p+1

e2[n] =

N+p∑
n=p+1

(
s[n]−

p∑
m=1

ams[n −m]

)2

if and only if e[n] ⊥ s[n − k], meaning

N+p∑
n=p+1

e[n]s[n − k] = 0

p linear equations in p unknowns:

~c = Φ~a
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Solving for the LPC Coefficients: The Standard Covariance
Method

Φ~a = ~c

1. Cholesky decomposition: Since Φ is symmetric, find
lower-triangular L s.t. Φ = LLT . (An O{p3} operation, but it
can be done iteratively).

2. Parcor coefficients: Find ~q s.t. L~q = ~c . (An O{p2}
operation that can be done iteratively).

3. Predictor coefficients: Find ~a s.t. ~q = LT~a (An O{p2}
operation that can’t be done iteratively).
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Covariance Method: The one-step predictor

Consider trying to solve for the first-order predictor that minimizes∑
e2[n]:

e[n] = s[n]− a
(1)
1 s[n − 1]

This is done by solving Φ~a = ~c where

Φ = φ(1, 1), ~a = a
(1)
1 , ~c = φ(0, 1)

Thus

a
(1)
1 =

φ(0, 1)

φ(1, 1)
=

∑N+p
n=p+1 s[n]s[n − 1]∑N+p
n=p+1 s

2[n − 1]

In other words, the first-order predictor is the one-step correlation,
divided by the signal energy.
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Covariance Method: Iterative Approach

Suppose that we’ve solved for the (m − 1)-step predictor, and we
want to find the m-step predictor: φ(1, 1) · · · φ(1,m − 1)

...
. . .

...
φ(1,m − 1) · · · φ(m − 1,m − 1)


 a

(m−1)
1

...

a
(m−1)
m−1

 =

 φ(0, 1)
...

φ(0,m − 1)


 φ(1, 1) · · · φ(1,m)

...
. . .

...
φ(1,m)) · · · φ(m,m)


 a

(m)
1
...

a
(m)
m

 =

 φ(0, 1)
...

φ(0,m)


Notice that Φ and ~c just add one row to the previous step, but
that’s not true about ~a!
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Covariance Method: Iterative Approach

To find the mth-order predictor coefficients,

~am = [a
(m)
1 , . . . , a

(m)
m ]T , we need to solve

Φm~am = ~cm,

where

Φm =

[
Φm−1

~φm
~φTm φ(m,m)

]
, ~am =

 a
(m)
1
...

a
(m)
m

 , ~cm =

[
~cm−1

φ(0,m)

]
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Covariance Method: Iterative Approach, Step 1, Cholesky
Decomposition

Cholesky Decomposition: find Lm such that Φm = LmL
T
m.[

Φm−1
~φm

~φTm φ(m,m)

]
=

[
Lm−1

~0
~̀T
m Lm,m

] [
Lm−1

~̀
m

~0 Lm,m

]
Notice that if you multiply the first row by the first column, you get

Φm−1 = Lm−1L
T
m−1

. . . In other words, the first (m − 1) rows of Lm are the solution
from the previous step! So L can be computed iteratively, row by
row.
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Covariance Method: Iterative Approach, Step 2, Parcor
Coefficients

Parcor coefficients: find ~qm s.t. Lm~qm = ~cm:[
Lm−1

~0
~̀T
m Lm,m

] [
~qm−1

qm

]
=

[
~cm−1

φ(0,m)

]
Notice that if you multiply the first m − 1 rows by the first m − 1
columns, you get

Lm−1~qm−1 = ~cm−1

. . . In other words, the first (m− 1) elements of ~qm are the solution
from the previous step! So ~q can be computed iteratively, row by
row.
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New Concept: The Partial Correlation (parcor) Coefficients

In some sense, the coefficient qm (the last element in the ~qm
vector) is the “new information” added at step m of this process.
The partial correlation coefficients, ki , usually called the parcor
coefficients, are the “new information,” scaled by the square root
of the residual energy:

ki =
qi√
εi
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New Concept: The Partial Correlation (parcor) Coefficients

Let’s be a little more specific. The signal energy is

ε1 = φ(0, 0) =

N+p∑
n=p+1

s[n]2

The error energy of the (m − 1)-step predictor is

εm =

N+p∑
n=p+1

(
s[n]−

m−1∑
i=1

a
(m−1)
i s[n − i ]

)2

= ε1 −
m−1∑
i=1

|qi |2,

where the proof of the last line is left for you to do in the
homework.
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LPC is Stable if and only if Parcor Coefficients are Bounded

The error energy of the (m − 1)-step predictor is

εm =

N+p∑
n=p+1

(
s[n]−

m−1∑
i=1

a
(m−1)
i s[n − i ]

)2

= ε1 −
m−1∑
i=1

|qi |2,

It turns out that the LPC filter is stable if and only if, each time
we increase the strength of the predictor, the error energy always
decreases. In other words,

ε1 > ε2 > · · · > εm−1 > εm > · · · 0
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LPC is Stable if and only if Parcor Coefficients are Bounded

So we have that LPC is stable if and only if

ε1 > ε2 > · · · > εm−1 > εm > · · · 0

This can be guaranteed if we define ki = qi√
εi

, and if we quantize ki
using quantization levels that guarantee −1 < ki < 1. In that case,
each of the following lines is smaller than the one before it:

ε2 = ε1 − |q1|2 = ε1 − |k1|2ε1

ε3 = ε2 − |q2|2 = ε2 − |k2|2ε2

ε4 = ε3 − |q3|2 = ε3 − |k3|2ε3

...
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Atal’s Modified Covariance Method

So Atal’s modified covariance method is like this:

1. Quantize the parcor coefficients, ki , using a quantizer that
only represents reconstruction levels in the range
−1 < ki < 1, then

2. Compute the predictor coefficients, ai , using the bounded
parcor coefficients!
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The Periodic Structure of Speech

There are two main types of periodicities in speech:

Each formant resonance appears as a damped sine wave.
The samples of each damped sine wave can be predicted from
two previous samples, thus to predict the resonant patterns of
4 formants, you need LPC with p ≈ 8− 10 previous samples:

d [n] = s[n]−
p∑

k=1

aks[n − k]

The pitch periodicity shows up as a glottal closure once per
T0. This is not sinusoidal at all! Therefore, to predict, you
really need to say that d [n] ≈ d [n −M]:

v [n] = d [n]− β1d [n−M + 1]− β2d [n−M]− β3d [n−M − 1]
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Predictive Analysis: LPC Plus Pitch Prediction

v [n]

−β3

z−1

−β2z−1

−β1z−1

z−(M−2)

d [n]

−a4z−1

−a3z−1

−a2z−1

−a1z−1

s[n]
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Predictive Analysis: LPC Plus Pitch Prediction

The LPC (short-time) predictor can be expressed as follows, where
Ps(z) is Atal’s notation:

D(z) = (1− Ps(z))S(z) =

(
1−

p∑
k=1

akz
−k

)
S(z)

The pitch (long-time) predictor can be expressed as follows, where
Pd(z) is Atal’s notation:

V (z) = (1− Pd(z))D(z) =

(
1− z−(M−2)

3∑
k=1

βkz
−k

)
D(z)
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Synthesis: LPC + Pitch Prediction

s[n]

a4 z−1

a3 z−1

a2 z−1

a1 z−1

d [n]

β3 z−1

β2 z−1

β1 z−(M−1)

v [n]
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Predictive Synthesis: LPC Plus Pitch Prediction

Pitch predictive synthesis can be expressed as follows, where Pd(z)
is Atal’s notation:

D̂(z) =
1

1− Pd(z)
V̂ (z) =

1

1− z−(M−2)
∑3

k=1 βkz
−k

V̂ (z)

LPC (short-time) predictive synthesis can be expressed as follows,
where Ps(z) is Atal’s notation:

Ŝ(z) =
1

1− Ps(z)
D̂(z) =

1

1−
∑p

k=1 akz
−k D̂(z)
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Atal (1982), Figure 18:

(a) Prediction residual, v [n],
w/frame-wise
center-clipping threshold

(b) Quantizer input
w/sample-wise
center-clipping threshold

(c) Quantized residual, v̂ [n]

(d) Reconstructed d̂ [n]

(e) Original d [n]

(f) Reconstructed ŝ[n]

(g) Original s[n]
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Quantization Strategy

Let’s define the predictor P(z) as the sequence of both LPC and
pitch predictors. We can express that by defining some coefficients
αk in terms of the ak and βk , thus:

V (z) = (1− Pd(z))(1− Ps(z))S(z) = (1− P(z))S(z)

v [n] = s[n]−
M+p+1∑
k=1

αks[n − k]



Review Covariance Pitch Predictor Perceptual Weighting Conclusions

Quantization Strategy

Atal proposed the following quantization strategy.
The encoder first constructs the decoded signal,

Ŝ(z) =
1

1− P(z)
Q̂(z),

and then create the following signal, which is the one we should
quantize:

Q(z) = S(z)− P(z)Ŝ(z)

q[n] = s[n]−
M+p+1∑
k=1

αk ŝ[n − k]
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What’s the Error Spectrum?

Now we have the following strategy:

q[n] = s[n]−
M+p+1∑
k=1

αk ŝ[n − k]

q̂[n] = q[n] + ε[n]

ŝ[n] = q̂[n] +

M+p+1∑
k=1

αk ŝ[n − k]

= s[n] + ε[n],

where

ε[n] is a random error, uniformly distributed between −∆
2 and

∆
2 , where ∆ is the quantizer step size.

If the quantizer step size is small enough, then ε[n] is
uncorrelated with ε[n −m].

In other words, ε[n] is white noise!
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Do We Want White Noise?

Peaks in the speech
spectrum can mask noise at
the same frequencies.

The total amount of noise
energy is fixed.

Therefore, it would be
better to have a noise
spectrum that was shaped
so that more of its energy is
near the formants.

That way, there would be
less noise energy at other
frequencies.
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The Noise-Shaping Filter

The structure above shapes the noise by 1
|1−R(e jω)|2 :

Y (z) = (1− R(z))S(z)

ŷ [n] = y [n] + ε[n]

Ŝ(z)− S(z) =
1

1− R(z)
ε(z)

E

[∣∣∣Ŝ(e jω)− S(e jω)
∣∣∣2] =

∣∣∣∣ 1

1− R(e jω)

∣∣∣∣2
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Criteria for a Noise-Shaping Filter

It should have peaks near the speech peaks ⇒ it should have
the same pole frequencies!

At frequencies far from those peaks, it should be flat ⇒ it
should be an all-pass filter!
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All-Pass Filter: A Pole for Every Zero

The basic idea of an all-pass filter is to have a pole for every zero.

H(z) =
1− rz−1

1− pz−1
, |H(ω)| =

|1− re−jω|
|1− pe−jω|

and then choose r = be jωc and p = ae jωc . If |b| > |a|, it’s an
all-pass filter with a notch at ωc .

When ω = ωc , |H(ω)| is exactly

|1− be j(ωc−ωc )|
|1− ae j(ωc−ωc )|

=
|1− b|
|1− a|

< 1

When ω 6= ωc ,

|e jω − r | ≈ |e jω − p|, so |H(ω)| ≈ 1
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All-Pass Filter: A Pole for Every Zero

The red line is |e jω − r | (distance to the zero on the unit circle).
The blue line is |e jω − p| (distance to the pole inside the unit
circle). They are almost the same length.
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All-Pass Filter with Conjugate-Pair Zeros and Poles

|H(ω)| =
|e jω − r1| × |e jω − r2|
|e jω − p1| × |e jω − p2|
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All-Pass Noise Shaping Filter

Suppose that the LPC filter is

1

1− PA(z)
=

1∏p
k=1(1− pkz−1)

We want the noise-shaping filter, 1/(1− R(z)), to have a notch at
every speech formant ∠pk . Thus we want something like

1− R(z) =
1− PA(z)

1− PB(z)
=

∏p
k=1(1− pkz

−1)∏p
k=1(1− αpkz−1)

where the bandwidth-expanding factor α is 0 ≤ α ≤ 1.



Review Covariance Pitch Predictor Perceptual Weighting Conclusions

All-Pass Noise Shaping Filter

Thus the noise spectrum is

E

[∣∣∣Ŝ(ω)− S(ω)
∣∣∣2] =

1

|1− R(ω)|2

=

∏p
k=1

∣∣1− αpke−jω∣∣2∏p
k=1 |1− pke−jω|2
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Conclusions

Atal’s modified covariance-LPC guarantees a stable LPC filter
by finding the parcor coefficients,

km =
qm√
εm
,

and then quantizing them with quantization levels such that
|km| < 1.

The pitch predictor turns a Gaussian white-noise-like signal,
v [n], into a signal with pitch periodicity.

Noise can be perceptually weighted, with a notch at each
formant frequency, so that the quantizer is encouraged to shift
noise toward the formants:

1− R(z) =
1− PA(z)

1− PB(z)
=

∏p
i=1(1− piz

−1)∏p
i=1(1− αpiz−1)

,
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