Lecture 11: Predictive Coding of Speech at Low Bit Rates, Background: LPC

Mark Hasegawa-Johnson

ECE 537: Speech Processing, Fall 2022
(1) Review: IIR Filters
(2) Inverse Z Transform
(3) Impulse Response of a Second-Order Filter
(4) Speech
(5) Linear Prediction
(6) Finding the Linear Predictive Coefficients
(7) Summary

Outline

(1) Review: IIR Filters
(2) Inverse Z Transform
(3) Impulse Response of a Second-Order Filter
4. Speech
(5) Linear Prediction

6 Finding the Linear Predictive Coefficients
(7) Summary

IIR Filter

Let's start with a general second-order IIR filter, which you would implement in one line of python like this:

$$
y[n]=x[n]+a_{1} y[n-1]+a_{2} y[n-2]
$$

By taking the Z-transform of both sides, and solving for $Y(z)$, you get

$$
H(z)=\frac{1}{1-a_{1} z^{-1}-a_{2} z^{-2}}=\frac{1}{\left(1-p_{1} z^{-1}\right)\left(1-p_{1}^{*} z^{-1}\right)}
$$

where p_{1} and p_{1}^{*} are the roots of the polymomial $z^{2}-a_{1} z-a_{2}$. (For the rest of this lecture, we'll assume that the polynomial has complex roots, because that's the hardest case).

Frequency Response of an All-Pole Filter

We get the magnitude response by just plugging in $z=e^{j \omega}$, and taking absolute value:

$$
|H(\omega)|=|H(z)|_{z=e^{j \omega}}=\frac{\left|e^{2 j \omega}\right|}{\left|e^{j \omega}-p_{1}\right| \times\left|e^{j \omega}-p_{1}^{*}\right|}
$$

Outline

(1) Review: IIR Filters
(2) Inverse Z Transform
(3) Impulse Response of a Second-Order Filter
4. Speech
(5) Linear Prediction

6 Finding the Linear Predictive Coefficients
(7) Summary

Inverse Z transform

Suppose you know $H(z)$, and you want to find $h[n]$. How can you do that?

How to find the inverse Z transform

Any IIR filter $H(z)$ can be written as. . .

- a sum of exponential terms, each with this form:

$$
G_{\ell}(z)=\frac{1}{1-a z^{-1}} \quad \leftrightarrow \quad g_{\ell}[n]=a^{n} u[n]
$$

- each possibly multiplied by a delay term, like this one:

$$
D_{k}(z)=b_{k} z^{-k} \quad \leftrightarrow \quad d_{k}[n]=b_{k} \delta[n-k] .
$$

How to find the inverse Z transform

Remember that multiplication in the frequency domain is convolution in the time domain, so

$$
\begin{aligned}
b_{k} z^{-k} \frac{1}{1-a z^{-1}} & \leftrightarrow\left(b_{k} \delta[n-k]\right) *\left(a^{n} u[n]\right) \\
& =b_{k} a^{n-k} u[n-k]
\end{aligned}
$$

Step \#1: The Products

So, for example,

$$
H(z)=\frac{1+b z^{-1}}{1-a z^{-1}}=\left(\frac{1}{1-a z^{-1}}\right)+b z^{-1}\left(\frac{1}{1-a z^{-1}}\right)
$$

and therefore

$$
h[n]=a^{n} u[n]+b a^{n-1} u[n-1]
$$

Step \#1: The Products

So here is the inverse transform of $H(z)=\frac{1+0.5 z^{-1}}{1-0.85 z^{-1}}$: $(0.85)^{n} u[n]$

$(0.85)^{n} u[n]+0.5(0.85)^{n-1} u[n-1]$

Step \#1: The Products

In general, if

$$
G(z)=\frac{1}{A(z)}
$$

for any polynomial $A(z)$, and

$$
H(z)=\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{A(z)}
$$

then

$$
h[n]=b_{0} g[n]+b_{1} g[n-1]+\cdots+b_{M} g[n-M]
$$

Step \#2: The Sum

Now we need to figure out the inverse transform of

$$
G(z)=\frac{1}{A(z)}
$$

You already know it for the first-order case $\left(A(z)=1-a z^{-1}\right)$. What about for the general case?

Step \#2: The Sum

The method is this:
(1) Factor $A(z)$:

$$
G(z)=\frac{1}{\prod_{\ell=1}^{N}\left(1-p_{\ell} z^{-1}\right)}
$$

(2) Assume that $G(z)$ is the sum of first-order fractions:

$$
G(z)=\frac{C_{1}}{1-p_{1} z^{-1}}+\frac{C_{2}}{1-p_{2} z^{-1}}+\cdots
$$

(3) Find the constants, C_{ℓ}, that make the equation true.
(c) ... and the inverse Z transform is

$$
g[n]=C_{1} p_{1}^{n} u[n]+C_{2} p_{2}^{n} u[n]+\cdots
$$

Outline

(1) Review: IIR Filters
(2) Inverse Z Transform
(3) Impulse Response of a Second-Order Filter
4. Speech
(5) Linear Prediction
(6) Finding the Linear Predictive Coefficients
(7) Summary

A General Second-Order IIR Filter

Suppose we have a general second-order IIR filter:

$$
y[n]=x[n]+a_{1} y[n-1]+a_{2} y[n-2]
$$

Its Z-transform is

$$
\begin{aligned}
Y(z) & =X(z)+a_{1} z^{-1} Y(z)+a_{2} z^{-2} Y(z) \\
& =\frac{1}{1-a_{1} z^{-1}-a_{2} z^{-2}} X(z)
\end{aligned}
$$

So, if p_{1} and p_{1}^{*} are the roots of the quadratic,

$$
H(z)=\frac{1}{1-a_{1} z^{-1}-a_{2} z^{-2}}=\frac{1}{\left(1-p_{1} z^{-1}\right)\left(1-p_{1}^{*} z^{-1}\right)}
$$

Partial Fraction Expansion

In order to find the impulse response, we do a partial fraction expansion:

$$
H(z)=\frac{1}{\left(1-p_{1} z^{-1}\right)\left(1-p_{1}^{*} z^{-1}\right)}=\frac{C_{1}}{1-p_{1} z^{-1}}+\frac{C_{2}}{1-p_{1}^{*} z^{-1}}
$$

When we multiply both sides by the denominator, we get:

$$
1=C_{1}\left(1-p_{1}^{*} z^{-1}\right)+C_{2}\left(1-p_{1} z^{-1}\right)
$$

Notice that the above equation is actually two equations: $1=C_{1}+C_{2}$, and $0=C_{1} p_{1}^{*}+C_{2} p_{1}$. Solving those two equations, we get,

$$
C_{1}=\frac{p_{1}}{p_{1}-p_{1}^{*}}, \quad C_{2}=\frac{p_{1}^{*}}{p_{1}^{*}-p_{1}}
$$

Impulse Response of a Second-Order IIR

... and so we just inverse transform.

$$
h[n]=C_{1} p_{1}^{n} u[n]+C_{1}^{*}\left(p_{1}^{*}\right)^{n} u[n]
$$

Example: Causal Stable IIR Filter

Let's assume that the filter is causal and stable, meaning that p_{1} is inside the unit circle, $p_{1}=e^{-\sigma_{1}+j \omega_{1}}$.

Example: Stable Resonator

Remember that p_{1} and p_{1}^{*} are the zeros of a polynomial whose coefficients are a_{1} and a_{2} :

$$
H(z)=\frac{1}{\left(1-p_{1} z^{-1}\right)\left(1-p_{1}^{*} z^{-1}\right)}=\frac{1}{1-a_{1} z^{-1}-a_{2} z^{-2}},
$$

So

$$
\begin{aligned}
& a_{1}=2 e^{-\sigma_{1}} \cos \omega_{1} \\
& a_{2}=-e^{-2 \sigma_{1}}
\end{aligned}
$$

Impulse Response of a Causal Stable Filter

To find the impulse response, we just need to find the constants in the partial fraction expansion. Those are

$$
C_{1}=\frac{p_{1}}{p_{1}-p_{1}^{*}}=\frac{p_{1}}{e^{-\sigma_{1}}\left(e^{j \omega_{1}}-e^{-j \omega_{1}}\right)}=\frac{e^{j \omega_{1}}}{2 j \sin \left(\omega_{1}\right)}
$$

and

$$
C_{1}^{*}=-\frac{e^{-j \omega_{1}}}{2 j \sin \left(\omega_{1}\right)}
$$

Impulse Response of a Second-Order IIR

Plugging in to the impulse response, we get

$$
\begin{aligned}
h[n] & =C_{1} p_{1}^{n} u[n]+C_{1}^{*}\left(p_{1}^{*}\right)^{n} u[n] \\
& =\frac{1}{2 j \sin \left(\omega_{1}\right)}\left(e^{j \omega_{1}} e^{\left(-\sigma_{1}+j \omega_{1}\right) n}-e^{-j \omega_{1}} e^{\left(-\sigma_{1}-j \omega_{1}\right) n}\right) u[n] \\
& =\frac{1}{2 j \sin \left(\omega_{1}\right)} e^{-\sigma_{1} n}\left(e^{j \omega_{1}(n+1)}-e^{-j \omega_{1}(n+1)}\right) u[n] \\
& =\frac{1}{\sin \left(\omega_{1}\right)} e^{-\sigma_{1} n} \sin \left(\omega_{1}(n+1)\right) u[n]
\end{aligned}
$$

Impulse Response of a Second-Order IIR

$$
h[n]=2\left|C_{1}\right| e^{-\sigma_{1} n} \sin \left(\omega_{1}(n+1)\right) u[n]
$$

- The constant is $2\left|C_{1}\right|=1 / \sin \omega_{1}$. It's just a scaling constant, it's not usually important to remember what it is.
- The $e^{-\sigma_{1} n} \sin \left(\omega_{1} n\right) u[n]$ part is what's called a "damped sinusoid," meaning a sinusoid that decays exponentially fast as a function of time. That's really the most important part of this equation.
- The fact that it's $\sin \left(\omega_{1}(n+1)\right)$ instead of $\sin \left(\omega_{1} n\right)$ is not really very important, but if you want, you can remember that it's necessary because, at $n=0, \sin \left(\omega_{1} n\right)=0$, but $\sin \left(\omega_{1}(n+1)\right) \neq 0$.

Impulse Response of a Second-Order IIR

$$
x[m]=\delta[m]
$$

$h[0-m]$

$y[m]=h[m] * x[m]$

$\cdots \lll \Delta \gg 1-\cdots+\cdots$

A Damped Resonator is Stable

A damped resonator is stable: any finite input will generate a finite output.

$$
H(\omega)=\left.H(z)\right|_{z=e^{j \omega}}=\frac{1}{\left(1-e^{-\sigma_{1}+j\left(\omega_{1}-\omega\right)}\right)\left(1-e^{-\sigma_{1}+j\left(-\omega_{1}-\omega\right)}\right)}
$$

The highest peak of the frequency response occurs at $\omega \approx \pm \omega_{1}$, where you get

$$
H\left(\omega_{1}\right)=\frac{1}{\left(1-e^{-\sigma_{1}}\right)\left(1-e^{-\sigma_{1}-2 j \omega_{1}}\right)} \approx \frac{1}{1-e^{-\sigma_{1}}} \approx \frac{1}{\sigma_{1}}
$$

Outline

(1) Review: IIR Filters
(2) Inverse Z Transform
(3) Impulse Response of a Second-Order Filter
(4) Speech
(5) Linear Prediction

6 Finding the Linear Predictive Coefficients
(7) Summary

Speech

Voiced speech is made when your vocal folds snap shut, once every $5-10 \mathrm{~ms}$. The snapping shut of the vocal folds causes a negative spike in the air pressure just above the vocal folds, like this:

$$
e[n]=G \delta\left[n-n_{0}\right]+G \delta\left[n-n_{0}-T_{0}\right]+G \delta\left[n-n_{0}-2 T_{0}\right]+\cdots
$$

where T_{0} is the pitch period ($5-10 \mathrm{~ms}$), n_{0} is the time alignment of the first glottal pulse, G is some large negative number, and I'm using $e[n]$ to mean "the speech excitation signal."

Speech

The speech signal echoes around inside your vocal tract for awhile, before getting radiated out through your lips. So we can model speech as

$$
s[n]=e[n]+a_{1} s[n-1]+a_{2} s[n-2]+\cdots
$$

where a_{1}, a_{2}, \ldots are the reflection coefficients inside the vocal tract, and $s[n]$ is the speech signal. In the frequency domain, we have

$$
S(z)=H(z) E(z)=\frac{1}{A(z)} E(z)=\frac{1}{1-\sum_{m} a_{m} z^{-1}} E(z)
$$

Speech: The Model

Speech is made when we take a series of impulses, one every $5-10 \mathrm{~ms}$, and filter them through a resonant cavity (like a bell).

Air pressure at glottis $=$ series of negative impulses

Impulse response of the vocal tract = damped resonances

Air pressure at lips = series of damped resonances

Speech: The Real Thing

For example, here's a real speech waveform (the vowel /o/):
Waveform of the vowel /o/

Speech: The Model

Here's the model again, zoomed in on just one glottal pulse:
Air pressure at glottis $=G \delta\left[n-n_{0}\right]$, once per frame

Impulse response of the vocal tract

Air pressure at lips $=G h\left[n-n_{0}\right]$, once per frame

Inverse Filtering

If $S(z)=E(z) / A(z)$, then we can get $E(z)$ back again by doing something called an inverse filter:

$$
\text { IF: } S(z)=\frac{1}{A(z)} E(z) \quad \text { THEN: } E(z)=A(z) S(z)
$$

The inverse filter, $A(z)$, has a form like this:

$$
A(z)=1-\sum_{k=1}^{p} a_{k} z^{-k}
$$

where p is twice the number of resonant frequencies. So if speech has 4-5 resonances, then $p \approx 10$.

Inverse Filtering

Waveform, $s[n]$, of the vowel /o/

Result of Inverse Filtering, $e[n]=s[n]-s u m_{k} a_{k} s[n-k]$

Inverse Filtering

This one is an all-pole (feedback-only) filter:

$$
S(z)=\frac{1}{1-\sum_{k=1}^{p} a_{k} z^{-k}} E(z)
$$

That means this one is an all-zero (feedforward only) filter:

$$
E(z)=\left(1-\sum_{k=1}^{p} a_{k} z^{-k}\right) S(z)
$$

which we can implement just like this:

$$
e[n]=s[n]-\sum_{k=1}^{p} a_{k} s[n-k]
$$

Outline

(1) Review: IIR Filters
(2) Inverse Z Transform
(3) Impulse Response of a Second-Order Filter
(4) Speech
(5) Linear Prediction
(6) Finding the Linear Predictive Coefficients
(7) Summary

Linear Predictive Analysis

This particular feedforward filter is called linear predictive analysis:

$$
e[n]=s[n]-\sum_{k=1}^{p} a_{k} s[n-k]
$$

It's kind of like we're trying to predict $s[n]$ using a linear combination of its own past samples:

$$
\hat{s}[n]=\sum_{k=1}^{p} a_{k} s[n-k],
$$

and then $e[n]$, the glottal excitation, is the part that can't be predicted:

$$
e[n]=s[n]-\hat{s}[n]
$$

Linear Predictive Analysis Filter

Linear Predictive Synthesis

The corresponding feedback filter is called linear predictive synthesis. The idea is that, given $e[n]$, we can resynthesize $s[n]$ by adding feedback, because:

$$
S(z)=\frac{1}{1-\sum_{k=1}^{p} a_{k} z^{-k}} E(z)
$$

means that

$$
s[n]=e[n]+\sum_{k=1}^{p} a_{k} s[n-k]
$$

Linear Predictive Synthesis Filter

Outline

(1) Review: IIR Filters
(2) Inverse Z Transform
(3) Impulse Response of a Second-Order Filter
(4) Speech
(5) Linear Prediction

6 Finding the Linear Predictive Coefficients
(7) Summary

Finding the Linear Predictive Coefficients

Things we don't know:

- The timing of the unpredictable event (n_{0}), and its amplitude (G).
- The coefficients a_{k}.

It seems that, in order to find n_{0} and G, we first need to know the predictor coefficients, a_{k}. How can we find a_{k} ?

Finding the Linear Predictive Coefficients

Let's make the following assumption:

- Everything that can be predicted is part of $\hat{s}[n]$. Only the unpredictable part is e[n].

Finding the Linear Predictive Coefficients

Let's make the following assumption:

- Everything that can be predicted is part of $\hat{s}[n]$. Only the unpredictable part is $e[n]$.
- So we define $e[n]$ to be:

$$
e[n]=s[n]-\sum_{k=1}^{p} a_{k} s[n-k]
$$

- ... and then choose a_{k} to make $e[n]$ as small as possible.

$$
a_{k}=\operatorname{argmin} \sum_{n=-\infty}^{\infty} e^{2}[n]
$$

Finding the Linear Predictive Coefficients

So we've formulated the problem like this: we want to find a_{k} in order to minimize:

$$
\mathcal{E}=\sum_{n=p+1}^{N+p} e^{2}[n]=\sum_{n=p+1}^{N+p}\left(s[n]-\sum_{m=1}^{p} a_{m} s[n-m]\right)^{2}
$$

The Orthogonality Principle

If we differentiate $d \mathcal{E} / d a_{k}$, we get

$$
\frac{d \mathcal{E}}{d a_{k}}=2 \sum_{n=p+1}^{N+p}\left(s[n]-\sum_{m=1}^{p} a_{m} s[n-m]\right) s[n-k]=2 e[n] s[n-k]
$$

If we then set the derivative to zero, we get what's called the orthogonality principle. The orthogonality principle says that the optimal coefficients, a_{k}, make the error orthogonal to the predictor signal (e[n] $\perp s[n-k]$), by which we mean that

$$
0=\sum_{n=p+1}^{N+p} e[n] s[n-k] \quad \text { for all } 1 \leq k \leq p
$$

This is a set of p linear equations (for $1 \leq k \leq p$) in p different unknowns $\left(a_{k}\right)$. So it can be solved.

Autocorrelation

In order to write the solution more easily, let's define something called the "autocovariance," $\phi(i, k)$:

$$
\phi(i, k)=\sum_{n=p+1}^{N+p} s[n-i] s[n-k]
$$

In terms of the autocorrelation, the orthogonality equations are

$$
0=\phi(0, k)-\sum_{m=1}^{p} a_{m} \phi(m, k) \quad \forall 1 \leq k \leq p
$$

which can be re-arranged as

$$
\phi(0, k)=\sum_{m=1}^{p} a_{m} \phi(m, k) \quad \forall 1 \leq k \leq p
$$

Matrices

Since we have p linear equations in p unknowns, let's write this as a matrix equation:

$$
\left[\begin{array}{c}
\phi(0,1) \\
\phi(0,2) \\
\vdots \\
\phi(0, p)
\end{array}\right]=\left[\begin{array}{cccc}
\phi(1,1) & \phi(1,2) & \cdots & \phi(1, p) \\
\phi(2,1) & \phi(2,2) & \cdots & \phi(2, p) \\
\vdots & \vdots & \ddots & \vdots \\
\phi(p, 1) & \phi(p, 2) & \cdots & \phi(p, p)
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{p}
\end{array}\right]
$$

Notice that this matrix is symmetric:

$$
\phi(i, k)=\phi(k, i)=\sum_{n=p+1}^{N+p} s[n-i] s[n-k]
$$

Matrices

Since we have p linear equations in p unknowns, let's write this as a matrix equation:

$$
\vec{c}=\Phi \vec{a}
$$

where

$$
\vec{c}=\left[\begin{array}{c}
\phi(0,1) \\
\phi(0,2) \\
\vdots \\
\phi(0, p)
\end{array}\right], \quad \Phi=\left[\begin{array}{cccc}
\phi(1,1) & \phi(1,2) & \cdots & \phi(1, p) \\
\phi(2,1) & \phi(2,2) & \cdots & \phi(2, p) \\
\vdots & \vdots & \ddots & \vdots \\
\phi(p, 1) & \phi(p, 2) & \cdots & \phi(p, p)
\end{array}\right] .
$$

Matrices

Since we have p linear equations in p unknowns, let's write this as a matrix equation:

$$
\vec{c}=\Phi \vec{a}
$$

and therefore the solution is

$$
\vec{a}=\Phi^{-1} \vec{c}
$$

Finding the Linear Predictive Coefficients

So here's the way we perform linear predictive analysis:
(1) Create the matrix Φ and vector \vec{c} :

$$
\vec{c}=\left[\begin{array}{c}
\phi(0,1) \\
\phi(0,2) \\
\vdots \\
\phi(0, p)
\end{array}\right], \quad \Phi=\left[\begin{array}{cccc}
\phi(1,1) & \phi(1,2) & \cdots & \phi(1, p) \\
\phi(2,1) & \phi(2,2) & \cdots & \phi(2, p) \\
\vdots & \vdots & \ddots & \vdots \\
\phi(p, 1) & \phi(p, 2) & \cdots & \phi(p, p)
\end{array}\right] .
$$

(2) Invert Φ.

$$
\vec{a}=\Phi^{-1} \vec{c}
$$

Autocorrelation versus Covariance Methods

- The method l've just described is called the covariance method for solving LPC. It requires inverting Φ (or, equivalently, finding its Cholesky decomposition) which is an $\mathcal{O}\left\{p^{3}\right\}$ operation.
- The computational complexity can be reduced to $\mathcal{O}\left\{p^{2}\right\}$ (using the Levinson-Durbin recursion) if we assume that $\phi(i, k)=\phi(0, i-k)=R[i-k] ; R[i-k]$ is called the autocorrelation, and this method is called the autocorrelation method. This is the same thing as assuming that the averaging window is very long:

$$
\phi(i, k)=\sum_{n=p+1}^{N+p} s[n-i] s[n-k] \stackrel{?}{=} \sum_{n=p+1}^{N+p} s[n] s[n-(i-k)]=\phi(0, i-k)
$$

Autocorrelation versus Covariance Methods

- The covariance method is more accurate: it finds exactly the predictor coefficients that are optimal for the window $p+1 \leq n \leq N+p$. The autocorrelation method is a little less accurate, especially for small analysis windows.
- With the normal covariance method, $A(z)$ often has roots outside the unit circle, especially for small analysis windows. This causes unstable speech synthesis, which makes your output go to $\hat{s}[n]=$ FLT_MAX.
- The Atal article describes a modified covariance method that has the extra accuracy of regular covariance method, but that also guarantees a stable synthesis filter.
- Recommendation: don't use $\vec{a}=\Phi^{-1} \vec{c}$. If you're going to use the covariance method, use the modified method described by Atal.

High-Frequency Correction

The Atal article also talks about a correction for the high-frequency roll-off of many A-to-D converters. Looking up that reference, we find that the HF correction is just

$$
\Phi=\Phi+\lambda \epsilon_{p} D
$$

where λ is a regularization constant $(\lambda \approx 0.1), \epsilon_{p}$ is the error residual obtained from LPC analysis without the correction, and D is a matrix with $3 / 8$ the main diagonal, $-1 / 4$ on each first off-diagonal, and $1 / 16$ on each second off-diagonal.

Outline

(1) Review: IIR Filters
(2) Inverse Z Transform
(3) Impulse Response of a Second-Order Filter
(4) Speech
(5) Linear Prediction
(6) Finding the Linear Predictive Coefficients
(7) Summary

Main Equations

- Inverse filter:

$$
\begin{aligned}
H(z) & =\frac{C_{1}}{1-p_{1} z^{-1}}+\frac{C_{1}^{*}}{1-p_{1}^{*} z^{-1}} \\
h[n] & =C_{1} p_{1}^{n} u[n]+C_{1}^{*}\left(p_{1}^{*}\right)^{n} u[n]
\end{aligned}
$$

- Orthogonality principle: a_{k} minimizes

$$
\sum_{n=-\infty}^{\infty} e^{2}[n]=\sum_{n-\infty}^{\infty}\left(s[n]-\sum_{m=1}^{p} a_{m} s[n-m]\right)^{2}
$$

if and only if $e[n] \perp s[n-k]$, meaning

$$
\sum_{n=-\infty}^{\infty} e[n] s[n-k]=0
$$

- p linear equations in p unknowns:

$$
\vec{a}=\Phi^{-1} \vec{c}
$$

