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IIR Filter

Let’s start with a general second-order IIR filter, which you would
implement in one line of python like this:

y [n] = x [n] + a1y [n − 1] + a2y [n − 2]

By taking the Z-transform of both sides, and solving for Y (z), you
get

H(z) =
1

1− a1z−1 − a2z−2
=

1

(1− p1z−1)(1− p∗1z
−1)

,

where p1 and p∗1 are the roots of the polymomial z2 − a1z − a2.
(For the rest of this lecture, we’ll assume that the polynomial has
complex roots, because that’s the hardest case).
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Frequency Response of an All-Pole Filter

We get the magnitude response by just plugging in z = e jω, and
taking absolute value:

|H(ω)| = |H(z)|z=e jω =
|e2jω|

|e jω − p1| × |e jω − p∗1 |
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Inverse Z transform

Suppose you know H(z), and you want to find h[n]. How can you
do that?
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How to find the inverse Z transform

Any IIR filter H(z) can be written as. . .

a sum of exponential terms, each with this form:

G`(z) =
1

1− az−1
↔ g`[n] = anu[n],

each possibly multiplied by a delay term, like this one:

Dk(z) = bkz
−k ↔ dk [n] = bkδ[n − k].
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How to find the inverse Z transform

Remember that multiplication in the frequency domain is
convolution in the time domain, so

bkz
−k 1

1− az−1
↔ (bkδ[n − k]) ∗ (anu[n])

= bka
n−ku[n − k]
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Step #1: The Products

So, for example,

H(z) =
1 + bz−1

1− az−1
=

(
1

1− az−1

)
+ bz−1

(
1

1− az−1

)
and therefore

h[n] = anu[n] + ban−1u[n − 1]
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Step #1: The Products

So here is the inverse transform of H(z) = 1+0.5z−1

1−0.85z−1 :
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Step #1: The Products

In general, if

G (z) =
1

A(z)

for any polynomial A(z), and

H(z) =

∑M
k=0 bkz

−k

A(z)

then
h[n] = b0g [n] + b1g [n − 1] + · · ·+ bMg [n −M]
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Step #2: The Sum

Now we need to figure out the inverse transform of

G (z) =
1

A(z)

You already know it for the first-order case (A(z) = 1− az−1).
What about for the general case?
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Step #2: The Sum

The method is this:

1 Factor A(z):

G (z) =
1∏N

`=1 (1− p`z−1)

2 Assume that G (z) is the sum of first-order fractions:

G (z) =
C1

1− p1z−1
+

C2

1− p2z−1
+ · · ·

3 Find the constants, C`, that make the equation true.

4 . . . and the inverse Z transform is

g [n] = C1p
n
1u[n] + C2p

n
2u[n] + · · ·
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A General Second-Order IIR Filter

Suppose we have a general second-order IIR filter:

y [n] = x [n] + a1y [n − 1] + a2y [n − 2]

Its Z-transform is

Y (z) = X (z) + a1z
−1Y (z) + a2z

−2Y (z)

=
1

1− a1z−1 − a2z−2
X (z)

So, if p1 and p∗1 are the roots of the quadratic,

H(z) =
1

1− a1z−1 − a2z−2
=

1

(1− p1z−1)(1− p∗1z
−1)
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Partial Fraction Expansion

In order to find the impulse response, we do a partial fraction
expansion:

H(z) =
1

(1− p1z−1)(1− p∗1z
−1)

=
C1

1− p1z−1
+

C2

1− p∗1z
−1

When we multiply both sides by the denominator, we get:

1 = C1(1− p∗1z
−1) + C2(1− p1z

−1)

Notice that the above equation is actually two equations:
1 = C1 + C2, and 0 = C1p

∗
1 + C2p1. Solving those two equations,

we get,

C1 =
p1

p1 − p∗1
, C2 =

p∗1
p∗1 − p1
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Impulse Response of a Second-Order IIR

. . . and so we just inverse transform.

h[n] = C1p
n
1u[n] + C ∗1 (p∗1)nu[n]
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Example: Causal Stable IIR Filter

Let’s assume that the filter is causal and stable, meaning that p1 is
inside the unit circle, p1 = e−σ1+jω1 .
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Example: Stable Resonator

Remember that p1 and p∗1 are the zeros of a polynomial whose
coefficients are a1 and a2:

H(z) =
1

(1− p1z−1)(1− p∗1z
−1)

=
1

1− a1z−1 − a2z−2
,

so

a1 = 2e−σ1 cosω1

a2 = −e−2σ1
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Impulse Response of a Causal Stable Filter

To find the impulse response, we just need to find the constants in
the partial fraction expansion. Those are

C1 =
p1

p1 − p∗1
=

p1

e−σ1 (e jω1 − e−jω1)
=

e jω1

2j sin(ω1)

and

C ∗1 = − e−jω1

2j sin(ω1)
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Impulse Response of a Second-Order IIR

Plugging in to the impulse response, we get

h[n] = C1p
n
1u[n] + C ∗1 (p∗1)nu[n]

=
1

2j sin(ω1)

(
e jω1e(−σ1+jω1)n − e−jω1e(−σ1−jω1)n

)
u[n]

=
1

2j sin(ω1)
e−σ1n

(
e jω1(n+1) − e−jω1(n+1)

)
u[n]

=
1

sin(ω1)
e−σ1n sin(ω1(n + 1))u[n]



Review Inverse Z Second-Order Speech Linear Prediction Coefficients Summary

Impulse Response of a Second-Order IIR

h[n] = 2|C1|e−σ1n sin(ω1(n + 1))u[n]

The constant is 2|C1| = 1/ sinω1. It’s just a scaling constant,
it’s not usually important to remember what it is.

The e−σ1n sin(ω1n)u[n] part is what’s called a “damped
sinusoid,” meaning a sinusoid that decays exponentially fast
as a function of time. That’s really the most important part
of this equation.

The fact that it’s sin(ω1(n + 1)) instead of sin(ω1n) is not
really very important, but if you want, you can remember that
it’s necessary because, at n = 0, sin(ω1n) = 0, but
sin(ω1(n + 1)) 6= 0.
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Impulse Response of a Second-Order IIR
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A Damped Resonator is Stable

A damped resonator is stable: any finite input will generate a finite
output.

H(ω) = H(z)|z=e jω =
1

(1− e−σ1+j(ω1−ω))(1− e−σ1+j(−ω1−ω))

The highest peak of the frequency response occurs at ω ≈ ±ω1,
where you get

H(ω1) =
1

(1− e−σ1)(1− e−σ1−2jω1)
≈ 1

1− e−σ1
≈ 1

σ1
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Speech

Voiced speech is made when your vocal folds snap shut, once every
5-10ms. The snapping shut of the vocal folds causes a negative
spike in the air pressure just above the vocal folds, like this:

e[n] = Gδ[n − n0] + Gδ[n − n0 − T0] + Gδ[n − n0 − 2T0] + · · ·

where T0 is the pitch period (5-10ms), n0 is the time alignment of
the first glottal pulse, G is some large negative number, and I’m
using e[n] to mean “the speech excitation signal.”



Review Inverse Z Second-Order Speech Linear Prediction Coefficients Summary

Speech

The speech signal echoes around inside your vocal tract for awhile,
before getting radiated out through your lips. So we can model
speech as

s[n] = e[n] + a1s[n − 1] + a2s[n − 2] + · · ·

where a1, a2, . . . are the reflection coefficients inside the vocal tract,
and s[n] is the speech signal. In the frequency domain, we have

S(z) = H(z)E (z) =
1

A(z)
E (z) =

1

1−
∑

m amz−1
E (z)
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Speech: The Model

Speech is made when we take a series of impulses, one every
5-10ms, and filter them through a resonant cavity (like a bell).
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Speech: The Real Thing

For example, here’s a real speech waveform (the vowel /o/):
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Speech: The Model

Here’s the model again, zoomed in on just one glottal pulse:
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Inverse Filtering

If S(z) = E (z)/A(z), then we can get E (z) back again by doing
something called an inverse filter:

IF: S(z) =
1

A(z)
E (z) THEN: E (z) = A(z)S(z)

The inverse filter, A(z), has a form like this:

A(z) = 1−
p∑

k=1

akz
−k

where p is twice the number of resonant frequencies. So if speech
has 4-5 resonances, then p ≈ 10.
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Inverse Filtering
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Inverse Filtering

This one is an all-pole (feedback-only) filter:

S(z) =
1

1−
∑p

k=1 akz
−k E (z)

That means this one is an all-zero (feedforward only) filter:

E (z) =

(
1−

p∑
k=1

akz
−k

)
S(z)

which we can implement just like this:

e[n] = s[n]−
p∑

k=1

aks[n − k]



Review Inverse Z Second-Order Speech Linear Prediction Coefficients Summary

Outline

1 Review: IIR Filters

2 Inverse Z Transform

3 Impulse Response of a Second-Order Filter

4 Speech

5 Linear Prediction

6 Finding the Linear Predictive Coefficients

7 Summary



Review Inverse Z Second-Order Speech Linear Prediction Coefficients Summary

Linear Predictive Analysis

This particular feedforward filter is called linear predictive
analysis:

e[n] = s[n]−
p∑

k=1

aks[n − k]

It’s kind of like we’re trying to predict s[n] using a linear
combination of its own past samples:

ŝ[n] =

p∑
k=1

aks[n − k],

and then e[n], the glottal excitation, is the part that can’t be
predicted:

e[n] = s[n]− ŝ[n]
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Linear Predictive Analysis Filter

e[n]

−a4z−1

−a3z−1

−a2z−1

−a1z−1

s[n]
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Linear Predictive Synthesis

The corresponding feedback filter is called linear predictive
synthesis. The idea is that, given e[n], we can resynthesize s[n] by
adding feedback, because:

S(z) =
1

1−
∑p

k=1 akz
−k E (z)

means that

s[n] = e[n] +

p∑
k=1

aks[n − k]
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Linear Predictive Synthesis Filter

s[n]

a4 z−1

a3 z−1

a2 z−1

a1 z−1

e[n]
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Finding the Linear Predictive Coefficients

Things we don’t know:

The timing of the unpredictable event (n0), and its amplitude
(G ).

The coefficients ak .

It seems that, in order to find n0 and G , we first need to know the
predictor coefficients, ak . How can we find ak?
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Finding the Linear Predictive Coefficients

Let’s make the following assumption:

Everything that can be predicted is part of ŝ[n]. Only the
unpredictable part is e[n].
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Finding the Linear Predictive Coefficients

Let’s make the following assumption:

Everything that can be predicted is part of ŝ[n]. Only the
unpredictable part is e[n].

So we define e[n] to be:

e[n] = s[n]−
p∑

k=1

aks[n − k]

. . . and then choose ak to make e[n] as small as possible.

ak = argmin
∞∑

n=−∞
e2[n]
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Finding the Linear Predictive Coefficients

So we’ve formulated the problem like this: we want to find ak in
order to minimize:

E =

N+p∑
n=p+1

e2[n] =

N+p∑
n=p+1

(
s[n]−

p∑
m=1

ams[n −m]

)2
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The Orthogonality Principle

If we differentiate dE/dak , we get

dE
dak

= 2

N+p∑
n=p+1

(
s[n]−

p∑
m=1

ams[n −m]

)
s[n − k] = 2e[n]s[n − k]

If we then set the derivative to zero, we get what’s called the
orthogonality principle. The orthogonality principle says that the
optimal coefficients, ak , make the error orthogonal to the
predictor signal (e[n] ⊥ s[n − k]), by which we mean that

0 =

N+p∑
n=p+1

e[n]s[n − k] for all 1 ≤ k ≤ p

This is a set of p linear equations (for 1 ≤ k ≤ p) in p different
unknowns (ak). So it can be solved.
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Autocorrelation

In order to write the solution more easily, let’s define something
called the “autocovariance,” φ(i , k):

φ(i , k) =

N+p∑
n=p+1

s[n − i ]s[n − k]

In terms of the autocorrelation, the orthogonality equations are

0 = φ(0, k)−
p∑

m=1

amφ(m, k) ∀ 1 ≤ k ≤ p

which can be re-arranged as

φ(0, k) =

p∑
m=1

amφ(m, k) ∀ 1 ≤ k ≤ p
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Matrices

Since we have p linear equations in p unknowns, let’s write this as
a matrix equation:

φ(0, 1)
φ(0, 2)

...
φ(0, p)

 =


φ(1, 1) φ(1, 2) · · · φ(1, p)
φ(2, 1) φ(2, 2) · · · φ(2, p)

...
...

. . .
...

φ(p, 1) φ(p, 2) · · · φ(p, p)




a1

a2
...
ap


Notice that this matrix is symmetric:

φ(i , k) = φ(k , i) =

N+p∑
n=p+1

s[n − i ]s[n − k]
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Matrices

Since we have p linear equations in p unknowns, let’s write this as
a matrix equation:

~c = Φ~a

where

~c =


φ(0, 1)
φ(0, 2)

...
φ(0, p)

 , Φ =


φ(1, 1) φ(1, 2) · · · φ(1, p)
φ(2, 1) φ(2, 2) · · · φ(2, p)

...
...

. . .
...

φ(p, 1) φ(p, 2) · · · φ(p, p)

 .
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Matrices

Since we have p linear equations in p unknowns, let’s write this as
a matrix equation:

~c = Φ~a

and therefore the solution is

~a = Φ−1~c
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Finding the Linear Predictive Coefficients

So here’s the way we perform linear predictive analysis:

1 Create the matrix Φ and vector ~c:

~c =


φ(0, 1)
φ(0, 2)

...
φ(0, p)

 , Φ =


φ(1, 1) φ(1, 2) · · · φ(1, p)
φ(2, 1) φ(2, 2) · · · φ(2, p)

...
...

. . .
...

φ(p, 1) φ(p, 2) · · · φ(p, p)

 .
2 Invert Φ.

~a = Φ−1~c
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Autocorrelation versus Covariance Methods

The method I’ve just described is called the covariance
method for solving LPC. It requires inverting Φ (or,
equivalently, finding its Cholesky decomposition) which is an
O{p3} operation.

The computational complexity can be reduced to O{p2}
(using the Levinson-Durbin recursion) if we assume that
φ(i , k) = φ(0, i − k) = R[i − k]; R[i − k] is called the
autocorrelation, and this method is called the
autocorrelation method. This is the same thing as assuming
that the averaging window is very long:

φ(i , k) =

N+p∑
n=p+1

s[n−i ]s[n−k]
?
=

N+p∑
n=p+1

s[n]s[n−(i−k)] = φ(0, i−k)
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Autocorrelation versus Covariance Methods

The covariance method is more accurate: it finds exactly the
predictor coefficients that are optimal for the window
p + 1 ≤ n ≤ N + p. The autocorrelation method is a little less
accurate, especially for small analysis windows.

With the normal covariance method, A(z) often has roots
outside the unit circle, especially for small analysis windows.
This causes unstable speech synthesis, which makes your
output go to ŝ[n] =FLT MAX.

The Atal article describes a modified covariance method that
has the extra accuracy of regular covariance method, but that
also guarantees a stable synthesis filter.

Recommendation: don’t use ~a = Φ−1~c . If you’re going to use
the covariance method, use the modified method described by
Atal.



Review Inverse Z Second-Order Speech Linear Prediction Coefficients Summary

High-Frequency Correction

The Atal article also talks about a correction for the
high-frequency roll-off of many A-to-D converters. Looking up that
reference, we find that the HF correction is just

Φ = Φ + λεpD,

where λ is a regularization constant (λ ≈ 0.1), εp is the error
residual obtained from LPC analysis without the correction, and D
is a matrix with 3/8 the main diagonal, −1/4 on each first
off-diagonal, and 1/16 on each second off-diagonal.
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Main Equations

Inverse filter:

H(z) =
C1

1− p1z−1
+

C ∗1
1− p∗1z

−1

h[n] = C1p
n
1u[n] + C ∗1 (p∗1)nu[n]

Orthogonality principle: ak minimizes

∞∑
n=−∞

e2[n] =
∞∑

n−∞

(
s[n]−

p∑
m=1

ams[n −m]

)2

if and only if e[n] ⊥ s[n − k], meaning

∞∑
n=−∞

e[n]s[n − k] = 0

p linear equations in p unknowns:

~a = Φ−1~c
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