ASR	Features	DTW	Conclusion

Lecture 10: Automatic Recognition of 200 Words Velichko & Zagoruyko, 1970

Mark Hasegawa-Johnson

ECE 537: Speech Processing Fundamentals

ASR	Features	DTW	Conclusion

ASR	Features	DTW	Conclu
●0000	00000000	00000000	00
Outline			

2 Log-Spectral Features

Oynamic Time Warping

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

ion

A	Distant		
0000	0000000	00000000	00
ASR	Features	DTW	Conclusion

Automatic Speech Recognition (ASR)

- Control sequence (cs): a sequence of 203 spoken words that you want to recognize
- Training sequence (ts): a second recording of each of those 203 words

- 1. один-od'ín-one
- 2. два—dvá—two
- 3. **три**—tri'í—three
- 4. четыре—t∫etir'e—four
- 5. пять---pját-five
- 6. шесть—∫ést'—six
- 7. семь—s'ém'—seven
- 8. восемь—vós'em'—eight
- 9. девять-d'évjat'--nine
- 10. ноль-nól-zero
- 11. плюс—pljús—plus
- 12. MHHyc-m'ínus-minus
- 13. разделить—razd'el'ít'—divide

ASR	Features	DTW	Conclusion
○○●○○	00000000	00000000	00
Automatic Spe	ech Recognition		

"Automatic speech recognition" (ASR) means that, for each word in cs, find the word in ts that is most acoustically similar.

- If it's the same word, "correct"
- Otherwise, "error"

- 1. один-od'ín-one
- 2. два—dvá—two
- 3. **три**—tri'í—three
- 4. четыре—t∫etir'e—four
- 5. пять---pját-five
- 6. шесть—∫ést'—six
- 7. семь—s'ém'—seven
- 8. восемь—vós'em'—eight
- 9. девять-d'évjat'-nine
- 10. ноль-nól-zero
- 11. плюс—pljús—plus
- 12. MHYC-m'ínus-minus
- 13. разделить—razd'el'ít'—divide

· ・ロト・(型)・(目)・(目) 目 の()

ASR	Features	DTW	Conclusion
000●0	00000000	000000000	00
Error Rate			

TABLE 2Recognition results of speaker No. 2

cs, Control sequence; ts, training sequence.

. ・ロト・(型)・(目)・(目)・目・の()()

• For each of 4 different ts,

- for each of 3 different cs,
 - Compute # correct out of 203 words in the cs
- Recognition reliability for the first ts is

$$\frac{609-26}{609}=0.957$$

M/hat make	s two words simil	ar?	
00000	0000000	00000000	00
ASR	Features	DTW	Conclusion

What makes two words similar?

- This method demands the following question: how do we measure the acoustic similarity between two recorded words?
- Answer: dynamic time warping, using log-spectral features.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Outline

▲□▶▲□▶▲ヨ▶▲ヨ▶ ヨーのへで

Log-Spectral Features for the 200-Word Speech Recognizer

- Spectral features included the log energy in five frequency bands.
- Constant-Q filters are motivated by auditory processing.
- Logarithmic units are motivated by the Weber-Fechner law.
- Euclidean distance between log-energy spectra is inverted to compute similarity.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Five bandpass-filtered signals are computed, w/center frequencies 225, 450, 900, 1800, 7200Hz. These correspond roughly to measurements of voicing, tongue height, tongue backness, tongue frontness, and frication.

Left: CC-BY 2.0, https://commons.wikimedia.org/wiki/File:Spectrogram_-iua-.png

Right: CC-SA 4.0, https://commons.wikimedia.org/wiki/File:Average_vowel_formants_F1_F2.png

ASR	Features	DTW	Conclusion
	0000000		

Auditory filters tend to have higher bandwidth at higher frequencies. V & Z model this phenomenon using a constant-Q analysis, with Q = 2.45. Quality of a filter (Q) is center freq over bandwidth, $Q = \frac{f_c}{B}$. It is also the number of undamped oscillation periods of the impulse response:

$$h(t) = e^{-\pi Bt} \sin(2\pi f_c t) u(t)$$

Left: CC-SA 3.0, https://commons.wikimedia.org/wiki/File:Bandwidth.svg

Right: CC-BY 4.0, https://commons.wikimedia.org/wiki/File:Damped_oscillation_function_plot.svg

Constant-0			
00000	00000000	00000000	00
ASR	Features	DTW	Conclusion

Using constant Q = 2.45, we get the following bandwidths for the V& Z sub-bands:

Center Frequency f_c (Hertz)	Bandwidth $B = \frac{f_c}{2.45}$ (Hertz)
225	92
450	184
900	367
1800	735
7200	2939

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Bandpass B	Energies		
ASR	Features	DTW	Conclusion
00000	○0000●00	00000000	00

- V& Z computed bandpass filters in continuous time, but let's pretend discrete time: x_i[n] = h_i[n] * x[n].
- The sub-band energy is the squared signal, summed over one frame:

$$E_i = \sum_{n=0}^{N-1} (x_i[n])^2$$

• The signal energy is

$$E_0 = \sum_{n=0}^{N-1} (x[n])^2$$

• V& Z use the following features, which are guaranteed to be non-negative:

$$f_i = \ln\left(\frac{E_0}{E_i}\right)$$

Weber-Fechner	Law		
ASR	Features	DTW	Conclusion
00000	○○○○○○●○	00000000	00

- Features are ln E₀/E_i.
 Logarithm is motivated by the Weber-Fechner Law.
- The Weber-Fechner law says that the minimum noticeable increase Δ*I* of intensity for a sense organ is proportional to intensity itself *I*:

$$\frac{\Delta I}{I} = \text{constant}$$

 If loudness followed the Weber-Fechner law, it would be measured by decibels.

CC-SA4.0, https://commons.wikimedia.org/wiki/

Spectral Si	milarity		
ASR	Features	DTW	Conclusion
00000	○○○○○○●	00000000	00

Suppose we have two speech segments characterized by the spectral features $\ln \left(\frac{E_0^{(i)}}{E_d^{(i)}}\right)$ for segment *i*, and $\ln \left(\frac{E_0^{(k)}}{E_d^{(k)}}\right)$ for segment *k*. Calculate the Euclidean distance between these two spectra:

$$\rho_{i,k} = \sqrt{\sum_{d=1}^{5} \left(\ln \left(\frac{E_0^{(i)}}{E_d^{(i)}} \right) - \ln \left(\frac{E_0^{(k)}}{E_d^{(k)}} \right) \right)^2}$$

"Similarity" is the regularized inverse of distance:

$$a_{i,k} = \frac{2}{2 + \rho_{i,k}^2}$$

ASR	Features	DTW	Conclusion
00000	00000000	●00000000	00
Outline			

2 Log-Spectral Features

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

- Call the shorter word the "vertical" word. It is a sequence of *m* frames, 1 ≤ *i* ≤ *m* (each frame is a five-dimensional log spectrum).
- The longer word is the "horizontal" word. It is a sequence of n frames, 1 ≤ k ≤ n, n ≥ m.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• The similarity between frame *i* and frame *k* is $a_{i,k}$.

Linear Time Warping computes word similarity by stretching one word to match the other, then averaging the frame similarities:

$$B = \frac{1}{m} \sum_{i=1}^{m} a_{i,k=\left(\frac{n}{m}\right)i}$$

This is shown as line 2 in the figure.

Linear Time Warping with Shift computes word similarity on a straight line with a shift:

$$B = \frac{1}{m} \sum_{i=0}^{m(1-b/n)} a_{i,k=\left(\frac{n}{m}\right)i+b}$$

This is line 3 in the figure.

ASR	Features	DTW	Conclusion
00000	00000000	00000000	00
Dynamic Time V	Narping		

Dynamic Time Warping

computes word similarity by finding the alignment curve that maximizes *B*:

$$B = \frac{1}{m} \max_{k(1),...,k(m)} \sum_{i=1}^{m} a_{i,k(i)}$$

... subject to the constraint that neither time axis ever goes backward $\left(-\frac{\pi}{4} \leq \gamma \leq \frac{\pi}{4}\right)$. This is curve 1 in the figure.

Dynamic Tin	ne Warning		
ASR	Features	DTW	Conclusion
00000	0000000	○○○○○●○○○	00

The curve of maximum similarity can be computed by dynamic programming:

- Initialize: $A_{m+1,k} = A_{i,n+1} = 0$ for all i, k.
- Iterate: $A_{i,k} = \max(A_{i+1,k}, A_{i,k+1}, a_{i,k} + A_{i+1,k+1})$

• Terminate: $B = \frac{1}{m}A_{1,1}$.

Incortions	Deletions and Sul	actitutions	
00000	0000000	000000000	00
ASR	Features	DTW	Conclusion

Insertions, Deletions, and Substitutions

$$A_{i,k} = \max(A_{i+1,k}, A_{i,k+1}, a_{i,k} + A_{i+1,k+1})$$

Notice there are three possible step directions:

- Vertical: $A_{i,k} = A_{i+1,k}$, frame *i* is inserted.
- Horizontal: $A_{i,k} = A_{i,k+1}$, frame k is deleted.
- Diagonal: $A_{i,k} = a_{i,k} + A_{i+1,k+1}$, frame *i* is substituted for frame *k*.

The algorithm chooses as many diagonal steps as it can, because $a_{i,k} \ge 0$.

		0000000000	
ASR	Features	DTW	Conclusion

Insertions, Deletions, and Substitutions

- The algorithm chooses as many diagonal steps as it can, because a_{i,k} ≥ 0.
- The largest possible number of diagonal steps is *m*.
- Therefore, I think the the average per-frame similarity should be normalized by ¹/_m; I think the ¹/_n in the article is a typo, but I'm not sure!

$$B = \frac{1}{m}A_{1,1}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

ASIC Features DTW Conclusion 00000 000000000 00 00	Computati	onal Complexity		
ASR Eestures DTW Conclusio	ASR	Features	DTW	Conclusion
	00000	0000000	00000000	00

- Linear time warping is $O\{n\}$ per word-pair, because it only tests one alignment.
- Dynamic time warping is $\mathcal{O}\{n^2\}$ per word-pair, to test every alignment.
- If there are v words in the training sequence, complexity is $\mathcal{O}\{n^2v\}$ per test word.
- Z& V reduce complexity by using the following algorithm. For each test word,
 - Use LTW for all training words, choose 32.
 - **2** Use LTW+shift with *s* different shifts, choose 8 best words.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Ose DTW to find the 1 best.

Total complexity: $O{8n^2 + 32sn + vn}$ per test word.

ASR	Features	DTW	Conclusion
00000	0000000	00000000	●○
Outline			

- 1 Automatic Speech Recognition
- 2 Log-Spectral Features
- Oynamic Time Warping

ASR	Features	DTW	Conclusion
00000	00000000	00000000	○●
Summary			

- Similarity of two words is defined to be the maximum, among all possible alignments, of the average similarity of the aligned spectra.
- This is computed by dynamic programming (DP):

$$A_{i,k} = \max(A_{i+1,k}, A_{i,k+1}, a_{i,k} + A_{i+1,k+1})$$

• Similarity of any pair of spectra is $a_{i,k} = \frac{2}{2+\rho_{i,k}^2}$,

$$\rho_{i,k} = \sqrt{\sum_{d=1}^{5} \left(\ln \left(\frac{E_0^{(i)}}{E_d^{(i)}} \right) - \ln \left(\frac{E_0^{(k)}}{E_d^{(k)}} \right) \right)^2}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ