Lecture 9: Exam 1 Review

Mark Hasegawa-Johnson

ECE 537: Speech Processing Fundamentals
1. Administrative Details

2. Loudness

3. Vocoder

4. Pitch

5. Acoustics of Nasal Consonants

6. Conclusion
Outline

1. Administrative Details
2. Loudness
3. Vocoder
4. Pitch
5. Acoustics of Nasal Consonants
6. Conclusion
Exam 1: Administrative Details

- In class, Wednesday; if you need conflict exam or on-line exam, contact me in advance
- One page handwritten notes, both sides
- No calculator
Loudness: Intensity, Loudness Level, Masking
Vocoder: Voiced, Unvoiced, Spectral shape
Pitch: Autocorrelation, Narrowband signals
Nasals: Laplace Transform, Plane Waves, Susceptance
Outline

1. Administrative Details
2. Loudness
3. Vocoder
4. Pitch
5. Acoustics of Nasal Consonants
6. Conclusion
Solutions to the Wave Equation

\[-\frac{\partial^2 p}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2}\]

The solution to the 1d wave equation is any combination of a rightward-traveling wave, \(r(t)\) and a leftward-traveling wave, \(l(t)\):

\[p(x, t) = r \left(t - \frac{x}{c} \right) + l \left(t + \frac{x}{c} \right)\]

\[v(x, t) = \frac{1}{\rho c} \left(r \left(t - \frac{x}{c} \right) - l \left(t + \frac{x}{c} \right) \right)\]
Acoustic Intensity of a Pure Tone

Suppose that \(p(t) \) is a pure tone, with a root-mean-squared (RMS) amplitude of \(P \) Pascals, and a frequency of \(f \) Hertz.

\[
p(t) = \sqrt{2}P \cos(2\pi ft)
\]

\[
\nu(t) = \frac{\sqrt{2}P}{\rho c} \cos(2\pi ft)
\]

The intensity of this wave is:

\[
J = \langle pv \rangle = f \int_0^{1/f} p(t)\nu(t) dt
\]

\[
= f \int_0^{1/f} \frac{2P^2}{\rho c} \cos^2(2\pi ft) \, dt = \frac{P^2}{\rho c}
\]
The intensity level of a sound can be measured with respect to a standard reference level. The standard reference level is \(J_r = 10^{-12} \text{ Watts per square meter} \). The level of a sound, measured w.r.t. \(10^{-12} \text{ W/m}^2 \), is called its “sound pressure level” (SPL). So

\[
\beta = 10 \log_{10} \left(\frac{J}{J_r} \right)
\]

...has units of “dB SPL.”
Loudness Level

Equal-loudness contours (red) (from ISO 226:2003 revision
Original ISO standard shown (blue) for 40-phones
\[G(L) = \sum_{k} b_k G(L_k) \]

\(G(L_k) \) is a nonlinear function of the loudness level, \(L_k \). The exam will give you a table of these values. If you want to find the loudness level, \(L \), of the whole sound, you can use

\[L = G^{-1} \left(\sum_{k} b_k G(L_k) \right) \]
If $\Delta f = |f_2 - f_1| < B$, then just add the intensities of the two tones, and calculate loudness from that. ($B \in \{100, 200, 400, 800\}$, depending on f_2).

If $\Delta f \geq B$, then

$$b_2 = \left[\frac{250 + \Delta f}{1000}\right] Q(L_2)$$

where $Q(L_2)$ is a nonlinear function of L_2. The exam will give you a table of its values.
Outline

1. Administrative Details
2. Loudness
3. Vocoder
4. Pitch
5. Acoustics of Nasal Consonants
6. Conclusion
Voiced Source: Impulse Train

\[x[n] = \sum_{m=-\infty}^{\infty} \delta[n - mN] \]

\[= \frac{1}{N} \sum_{k=0}^{N-1} e^{j \frac{2\pi kn}{N}} \]
Suppose $x[n]$ is periodic:

$$x[n] = \sum_{k=0}^{N-1} X_k e^{j \frac{2\pi kn}{N}},$$

and we bandpass filter it with a filter $h[n]$:

$$y[n] = h[n] \ast x[n],$$

then $y[n]$ is periodic with Fourier series coefficients given by:

$$Y_k = H \left(\frac{2\pi k}{N} \right) X_k$$
Unvoiced Source: White Noise

The autocorrelation of a wide-sense stationary signal is:

\[R_{xx}[m] = E [x[n]x[n + m]] \]

Its power spectrum is:

\[R_{xx}(\omega) = E \left[\frac{1}{N} |X(\omega)|^2 \right] = \mathcal{F} \{ R_{xx}[m] \} \]

A unit variance white noise signal has

\[R_{xx}[m] = \delta[m] \]
\[R_{xx}(\omega) = 1 \]
Spectrum of a Bandpass-Filtered Noise

\[y[n] = h[n] \ast x[n] \]

\[R_{yy}[n] = h[n] \ast h^*[−n] \ast R_{xx}[n] \]

\[R_{yy}(\omega) = |H(\omega)|^2 R_{xx}(\omega) \]
Outline

1. Administrative Details
2. Loudness
3. Vocoder
4. Pitch
5. Acoustics of Nasal Consonants
6. Conclusion
Correlogram

1. Pass the signal through a bank of bandpass filters:

 \[x_f[n] = h_f[n] \ast x[n], \]

 where \(f \) denotes the center frequency, in Hertz, and we assume that the bandwidth is one auditory critical band.

2. Compute the autocorrelation in each channel:

 \[\phi(f, m) = E[x_f[n]x_f[n + m]] \]
Suppose $x[n]$ is periodic, and the critical band contains only one harmonic:

$$x_f[n] = A \cos \left(\frac{2\pi kF_0}{F_s} n + \theta \right)$$

where kF_0 is within the passband of the filter centered at f. Suppose we treat the timing, n, as a random variable. Then

$$\phi(f, m) = E_n [x_f[n]x_f[n + m]]$$

$$= \frac{A^2}{2} \cos \left(\frac{2\pi kF_0}{F_s} m \right)$$

...which is periodic with a period of $\frac{1}{kF_0}$, and at every multiple thereof, including the pitch period.
Autocorrelation of two sinusoids

Suppose $x[n]$ is periodic, and the critical band contains only two harmonics:

$$x_f[n] = A_k \cos\left(\frac{2\pi kF_0}{F_s}n + \theta_k\right) + A_{k+1} \cos\left(\frac{2\pi (k + 1)F_0}{F_s}n + \theta_{k+1}\right)$$

where kF_0 and $(k + 1)F_0$ are within the passband of the filter centered at f.

Suppose we treat the timing, n, as a random variable. Then

$$\phi(f, m) = E_n [x_f[n]x_f[n + m]]$$

$$= \frac{A_k^2}{2} \cos\left(\frac{2\pi kF_0}{F_s}m\right) + \frac{A_{k+1}^2}{2} \cos\left(\frac{2\pi (k + 1)F_0}{F_s}m\right)$$

...which is periodic at the pitch period $\frac{1}{F_0}$.

Autocorrelation of Narrowband Noise

Suppose $x[n]$ is unit-variance white noise. Then

$$\phi(f, m) = E_n[x_f[n]x_f[n + m]] = h_f[m] \ast h_f[-m] \ast R_{xx}[m]$$

But what is that? It turns out to be easier to solve in the frequency domain:

$$\phi(f, \omega) = |H_f(\omega)|^2 R_{xx}(\omega) = |H_f(\omega)|^2$$

$$= \begin{cases}
1 & \frac{2\pi(f-B/2)}{F_s} \leq |\omega| \leq \frac{2\pi(f+B/2)}{F_s} \\
0 & \text{otherwise}
\end{cases}$$

where B is the auditory filter bandwidth. This has the inverse transform of

$$\phi(f, m) = \left(\frac{B}{F_s}\right) \text{sinc} \left(\frac{\pi B}{F_s} m\right) \cos \left(\frac{2\pi f}{F_s} m\right)$$

... which is periodic with a period of $\frac{1}{f}$, which varies from filter to filter, and has no relationship to any overall pitch period.
Outline

1. Administrative Details
2. Loudness
3. Vocoder
4. Pitch
5. Acoustics of Nasal Consonants
6. Conclusion
The Two-Sided Laplace Transform

\[X(s) = \int_{-\infty}^{\infty} x(t)e^{-st} \, dt \]

Example:

\[x(t) = e^{at} u(t) \]

\[X(s) = \frac{1}{s-a}, \quad \text{for} \ \Re(s) > \Re(a) \]
Delay Property

If

\[y(t) = x(t - d), \]

then

\[Y(s) = \int_{-\infty}^{\infty} y(t)e^{-st} dt = X(s)e^{-sd} \]
Laplace Transform of the Solution to the Wave Equation

\[p(x, t) = r \left(t - \frac{x}{c} \right) + l \left(t + \frac{x}{c} \right) \]

Let’s take the Laplace transform of that:

\[P(x, s) = \int_{-\infty}^{\infty} p(x, t) e^{-st} \, dt \]

\[= R(s) e^{-xs/c} + L(s) e^{xs/c} \]
The relationship between pressure and volume velocity is:

\[P(x, s) = R(s)e^{-sx/c} + L(s)e^{sx/c}, \]
\[U(x, s) = \frac{A(x)}{\rho c} \left(R(s)e^{-sx/c} - L(s)e^{sx/c} \right) \]
The Zero-Pressure Constraint at the Lips

\[p(x, t) = r \left(t - \frac{x}{c} \right) + l \left(t + \frac{x}{c} \right), \]
\[P(x, s) = R(s) e^{-sx/c} + L(s) e^{sx/c}. \]

If we apply the condition that \(p(d_l, t) = 0 \), we learn that \(l(t) \) is a reflection of \(r(t) \), delayed by \(2d_l/c \) and multiplied by -1:

\[B(x, s) = \frac{U(x, s)}{P(x, s)} \]
\[= -\frac{A(x)}{\rho c} \coth \left(s(x - d_l)/c \right) \]
The Zero-Velocity Constraint at the Lips

\[p(x, t) = r \left(t - \frac{x}{c} \right) + l \left(t + \frac{x}{c} \right), \]
\[P(x, s) = R(s)e^{-sx/c} + L(s)e^{sx/c}. \]

If we apply the condition that \(u(d_g, t) = 0 \), we learn that \(l(t) \) is a reflection of \(r(t) \), delayed by \(2d_l/c \) and multiplied by -1:

\[B(x, s) = \frac{U(x, s)}{P(x, s)} \]
\[= -\frac{A(x)}{\rho c} \tanh \left(s(x - d_l)/c \right) \]
Fujimura proposed computing the resonances of a nasal consonant by finding the zeros of the total susceptance,

\[B(s) = B_p(s) + B_n(s) + B_m(s) \]

For the consonant /\eta/\, Fujimura assumed that the mouth cavity has zero volume, thus \(B_m(s) = 0 \), so resonances of /\eta/ are the zeros of \(B_i(s) = B_n(s) + B_p(s) \).
The resonances of /m/ and /n/ are then modeled by the equation

\[B_i(s) = -B_m(s) \]
Anti-resonance

The anti-resonance (the zeros of the transfer function) are the frequencies at which

\[B_m(s) = \infty \]
Outline

1. Administrative Details
2. Loudness
3. Vocoder
4. Pitch
5. Acoustics of Nasal Consonants
6. Conclusion
Conclusion: Topics for Exam

- **Loudness**: Intensity, Loudness Level, Masking
- **Vocoder**: Voiced, Unvoiced, Spectral shape
 - Not covered: Brownian motion, relaxation oscillator
- **Pitch**: Autocorrelation, Narrowband signals
 - Not covered: Gammatone filters
- **Nasals**: Laplace Transform, Plane Waves, Susceptance