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Exam 1: Administrative Details

In class, Wednesday; if you need conflict exam or on-line
exam, contact me in advance

One page handwritten notes, both sides

No calculator
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Content

Loudness: Intensity, Loudness Level, Masking

Vocoder: Voiced, Unvoiced, Spectral shape

Pitch: Autocorrelation, Narrowband signals

Nasals: Laplace Transform, Plane Waves, Susceptance
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Solutions to the Wave Equation

−∂
2p

∂x2
=

1

c2
∂2p

∂t2

The solution to the 1d wave equation is any combination of a
rightward-traveling wave, r(t) and a leftward-traveling wave, l(t):
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Acoustic Intensity of a Pure Tone

Suppose that p(t) is a pure tone, with a root-mean-squared (RMS)
amplitude of P Pascals, and a frequency of f Hertz.

p(t) =
√

2P cos (2πft)

v(t) =

√
2P

ρc
cos (2πft)

The intensity of this wave is:

J = 〈pv〉 = f

∫ 1/f

0
p(t)v(t)dt

= f

∫ 1/f

0

2P2

ρc
cos2 (2πft) dt =

P2

ρc
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Sound Pressure Level

The intensity level of a sound can be measured with respect to a
standard reference level. The standard reference level is Jr = 10−12

Watts per square meter.
The level of a sound, measured w.r.t. 10−12 W/m2, is called its
“sound pressure level” (SPL). So

β = 10 log10

(
J

Jr

)
. . . has units of “dB SPL.”
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Loudness Level
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Loudness

G (L) =
∑
k

bkG (Lk)

G (Lk) is a nonlinear function of the loudness level, Lk . The exam
will give you a table of these values.
If you want to find the loudness level, L, of the whole sound, you
can use

L = G−1

(∑
k

bkG (Lk)

)
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Masking

If ∆f = |f2 − f1| < B, then just add the intensities of the two
tones, and calculate loudness from that.
(B ∈ {100, 200, 400, 800}, depending on f2).

If ∆f ≥ B, then

b2 =

[
250 + ∆f

1000

]
Q(L2)

where Q(L2) is a nonlinear function of L2. The exam will give
you a table of its values.
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Voiced Source: Impulse Train

x [n] =
∞∑

m=−∞
δ[n −mN]

=
1

N

N−1∑
k=0

e j
2πkn
N
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Spectrum of a Bandpass-Filtered Impulse Train

Suppose x [n] is periodic:

x [n] =
N−1∑
k=0

Xke
j 2πkn

N ,

and we bandpass filter it with a filter h[n]:

y [n] = h[n] ∗ x [n],

then y [n] is periodic with Fourier series coefficients given by:

Yk = H

(
2πk

N

)
Xk
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Unvoiced Source: White Noise

The autocorrelation of a wide-sense stationary signal is:

Rxx [m] = E [x [n]x [n + m]]

Its power spectrum is:

Rxx(ω) = E

[
1

N
|X (ω)|2

]
= F {Rxx [m]}

A unit variance white noise signal has

Rxx [m] = δ[m]

Rxx(ω) = 1
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Spectrum of a Bandpass-Filtered Noise

y [n] = h[n] ∗ x [n]

Ryy [n] = h[n] ∗ h∗[−n] ∗ Rxx [n]

Ryy (ω) = |H(ω)|2 Rxx(ω)
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Correlogram

1 Pass the signal through a bank of bandpass filters:

xf [n] = hf [n] ∗ x [n],

where f denotes the center frequency, in Hertz, and we
assume that the bandwidth is one auditory critical band.

2 Compute the autocorrelation in each channel:

φ(f ,m) = E [xf [n]xf [n + m]]
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Autocorrelation of a Sinusoid

Suppose x [n] is periodic, and the critical band contains only one
harmonic:

xf [n] = A cos

(
2πkF0
Fs

n + θ

)
where kF0 is within the passband of the filter centered at f .
Suppose we treat the timing, n, as a random variable. Then

φ(f ,m) = En [xf [n]xf [n + m]]

=
A2

2
cos

(
2πkF0
Fs

m

)
. . . which is periodic with a period of 1

kF0
, and at every multiple

thereof, including the pitch period.
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Autocorrelation of two sinusoids

Suppose x [n] is periodic, and the critical band contains only two
harmonics:

xf [n] = Ak cos

(
2πkF0
Fs

n + θk

)
+Ak+1 cos

(
2π(k + 1)F0

Fs
n + θk+1

)
where kF0 and (k + 1)F0 are within the passband of the filter
centered at f .
Suppose we treat the timing, n, as a random variable. Then

φ(f ,m) = En [xf [n]xf [n + m]]

=
A2
k

2
cos

(
2πkF0
Fs

m

)
+

A2
k+1

2
cos

(
2π(k + 1)F0

Fs
m

)
. . . which is periodic at the pitch period 1

F0
.
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Autocorrelation of Narrowband Noise

Suppose x [n] is unit-variance white noise. Then

φ(f ,m) = En [xf [n]xf [n + m]] = hf [m] ∗ h∗f [−m] ∗ Rxx [m]

But what is that? It turns out to be easier to solve in the
frequency domain:

φ(f , ω) = |Hf (ω)|2 Rxx(ω) = |Hf (ω)|2

=

{
1 2π(f−B/2)

Fs
≤ |ω| ≤ 2π(f+B/2)

Fs

0 otherwise

where B is the auditory filter bandwidth. This has the inverse
transform of

φ(f ,m) =

(
B

Fs

)
sinc

(
πB

Fs
m

)
cos

(
2πf

Fs
m

)
. . . which is periodic with a period of 1

f , which varies from filter to
filter, and has no relationship to any overall pitch period.
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The Two-Sided Laplace Transform

X (s) =

∫ ∞
−∞

x(t)e−stdt

Example:
x(t) = eatu(t)

X (s) =
1

s − a
, for <(s) > <(a)
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Delay Property

If
y(t) = x(t − d),

then

Y (s) =

∫ ∞
−∞

y(t)e−stdt

= X (s)e−sd
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Laplace Transform of the Solution to the Wave Equation

p(x , t) = r
(
t − x

c

)
+ l
(
t +

x

c

)
Let’s take the Laplace transform of that:

P(x , s) =

∫ ∞
−∞

p(x , t)e−stdt

= R(s)e−xs/c + L(s)exs/c
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Volume Velocity

The relationship between pressure and volume velocity is:

P(x , s) = R(s)e−sx/c + L(s)esx/c ,

U(x , s) =
A(x)

ρc

(
R(s)e−sx/c − L(s)esx/c

)
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The Zero-Pressure Constraint at the Lips

p(x , t) = r
(
t − x

c

)
+ l
(
t +

x

c

)
,

P(x , s) = R(s)e−sx/c + L(s)esx/c .

If we apply the condition that p(dl , t) = 0, we learn that l(t) is a
reflection of r(t), delayed by 2dl/c and multiplied by -1:

B(x , s) =
U(x , s)

P(x , s)

= −A(x)

ρc
coth (s(x − dl)/c)



Administration Loudness Vocoder Pitch Nasals Conclusion

The Zero-Velocity Constraint at the Lips

p(x , t) = r
(
t − x

c

)
+ l
(
t +

x

c

)
,

P(x , s) = R(s)e−sx/c + L(s)esx/c .

If we apply the condition that u(dg , t) = 0, we learn that l(t) is a
reflection of r(t), delayed by 2dl/c and multiplied by -1:

B(x , s) =
U(x , s)

P(x , s)

= −A(x)

ρc
tanh (s(x − dl)/c)
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Resonances of a Nasal Consonant

Fujimura proposed computing the resonances of a nasal consonant
by finding the zeros of the total susceptance,

B(s) = Bp(s) + Bn(s) + Bm(s)

For the consonant /N/, Fujimura assumed that the mouth cavity
has zero volume, thus Bm(s) = 0, so resonances of /N/ are the
zeros of Bi (s) = Bn(s) + Bp(s).
The resonances of /m/ and /n/ are then modeled by the equation

Bi (s) = −Bm(s)
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Anti-resonance

The anti-resonance (the zeros of the transfer function) are the
frequencies at which

Bm(s) =∞
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Conclusion: Topics for Exam

Loudness: Intensity, Loudness Level, Masking

Vocoder: Voiced, Unvoiced, Spectral shape

Not covered: Brownian motion, relaxation oscillator

Pitch: Autocorrelation, Narrowband signals

Not covered: Gammatone filters

Nasals: Laplace Transform, Plane Waves, Susceptance
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