Lecture 9: Exam 1 Review

Mark Hasegawa-Johnson

ECE 537: Speech Processing Fundamentals
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Exam 1: Administrative Details

@ In class, Wednesday; if you need conflict exam or on-line
exam, contact me in advance

@ One page handwritten notes, both sides

@ No calculator
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Content

@ Loudness: Intensity, Loudness Level, Masking
@ Vocoder: Voiced, Unvoiced, Spectral shape
@ Pitch: Autocorrelation, Narrowband signals

@ Nasals: Laplace Transform, Plane Waves, Susceptance
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Solutions to the Wave Equation

0%p 1 0%p
S ox2 T 2ot
The solution to the 1d wave equation is any combination of a
rightward-traveling wave, r(t) and a leftward-traveling wave, /(t):

= (1) (1)

0= 2 (1 (1-2) -1(e+)
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Acoustic Intensity of a Pure Tone

Suppose that p(t) is a pure tone, with a root-mean-squared (RMS)
amplitude of P Pascals, and a frequency of f Hertz.

p(t) = V2P cos (2 ft)

v(t) = \{oicp cos (27 ft)

The intensity of this wave is:

1/f
J=(pv) = f/o p(£)v(¢)dt

1/f 2p2 P2
= f/ — cos? (2rft) dt = —
0 pC pc
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Sound Pressure Level

The intensity level of a sound can be measured with respect to a
standard reference level. The standard reference level is J, = 10712
Watts per square meter.

The level of a sound, measured w.r.t. 10712 W/m2, is called its
“sound pressure level” (SPL). So

J
B = 10log;g (Jr>

... has units of “dB SPL.”
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Loudness Level

(estimated)

Sound Pressure Level (dB

(threshold)
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Equal-loudness contours (red) (from ISO 226:2003 revisic
Original ISO standard shown (blue) for 40-phons
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Loudness

G(L) = beG(Ly)
k
G(Lk) is a nonlinear function of the loudness level, Lx. The exam

will give you a table of these values.
If you want to find the loudness level, L, of the whole sound, you

can use
L=Gt <Z ka(Lk)>
k
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Masking

o If Af =|f, — fi| < B, then just add the intensities of the two
tones, and calculate loudness from that.
(B € {100, 200,400,800}, depending on f,).

o If Af > B, then

2 Af
b [50+

1000 ] QlL2)

where Q(Ly) is a nonlinear function of L. The exam will give
you a table of its values.
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Voiced Source: Impulse Train

m=—00
N-1
1 s 2mkn
= — ej N
N
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Spectrum of a Bandpass-Filtered Impulse Train

Suppose x[n] is periodic:

2mkn

N-1 )
x[n] =" X W,
k=0

and we bandpass filter it with a filter h[n]:

yln = hln] = [,

then y[n] is periodic with Fourier series coefficients given by:

2wk
Ye=H| — ] X
k (N) k
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Unvoiced Source: White Noise

The autocorrelation of a wide-sense stationary signal is:
Redm] = E [x[nlx[n + m]]

Its power spectrum is:
1
Rei) = € | IX()F| = 7 (Rulml}

A unit variance white noise signal has

Rux[m] = d[m]
Rux(w) =1



Spectrum of a Bandpass-Filtered Noise

vl = o] « x{r]
Ryy[n] = h[n] = h*[—n]  Re[n]

Ryy(w) = |H(w)]2 Rux(w)
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Correlogram

@ Pass the signal through a bank of bandpass filters:
x¢[n] = he[n] * x[n],

where f denotes the center frequency, in Hertz, and we
assume that the bandwidth is one auditory critical band.

@ Compute the autocorrelation in each channel:

o(f, m) = E [x¢[n]xe[n + m]]



Autocorrelation of a Sinusoid

Suppose x[n] is periodic, and the critical band contains only one

harmonic: o kF
x¢[n] = Acos < Wl__ On+9>

S

where kFg is within the passband of the filter centered at f.
Suppose we treat the timing, n, as a random variable. Then

¢(f, m) = Ep [x¢[n]xe[n + m]]

B A—2cos 27TkF0m
2 F,

... which is periodic with a period of %FO and at every multiple

thereof, including the pitch period.



Autocorrelation of two sinusoids

Suppose x[n] is periodic, and the critical band contains only two

harmonics:

2n(k + 1)Fo
Fs

2mkF
xf[n] = Ag cos < WF 0h 4 9k> +Ak1 Cos (

S

n+ 9k+1>

where kFy and (k + 1)Fgy are within the passband of the filter
centered at f.
Suppose we treat the timing, n, as a random variable. Then

o(f, m) = En [x¢[n]x¢[n + m]|
AL o (27rkF0 m) N A2 o <27r(k +1)F m>

2 Fs 2 Fs

...which is periodic at the pitch period ,_-io
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Autocorrelation of Narrowband Noise

Suppose x[n] is unit-variance white noise. Then
o(f, m) = E, [x¢[n]xr[n + m]] = he[m] = hE[—m] * Ry [m]

But what is that? It turns out to be easier to solve in the
frequency domain:

O(f,w) = |He(w)]? Rex(w) = |Hr(w)[?
[ 27r(f;sB/2) <ol < 27r(f;_rsB/2)
0 otherwise

where B is the auditory filter bandwidth. This has the inverse
transform of

o(f,m) = <'E> sinc <7;__Bm> cos <2I7__rfm)

... which is periodic with a period of % which varies from filter to
filter, and has no relationship to any overall pitch period.
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© Acoustics of Nasal Consonants



The Two-Sided Laplace Transform

Example:




Nasals
[e] Ielelololele}

Delay Property

If
y(t) = x(t —d),
then
Y(s) = _OO y(t)e *tdt
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Laplace Transform of the Solution to the Wave Equation

e =+ (1) 1 (1+%)

Let's take the Laplace transform of that:

P(x,s) = /00 p(x, t)e *tdt

—00

— R(S)efxs/c + L(s)exs/c
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Volume Velocity

The relationship between pressure and volume velocity is:
( ) (S) —sx/c + L(S)esx/c’
U(X S) ( ) (R(S) —sx/c L(S)esx/c)
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The Zero-Pressure Constraint at the Lips

p(x,t)zr(t—i>+/(t+§>a

C
P(x,s) = R(s)e™ /¢ + L(s)e™/.

If we apply the condition that p(dj, t) = 0, we learn that /(t) is a
reflection of r(t), delayed by 2d;/c and multiplied by -1:

U(x, s)
P(x, s)
= —A/Ez_() coth (s(x — dj)/c)

B(x,s) =
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The Zero-Velocity Constraint at the Lips

p(x,t)zr(t—i>+/(t+§>a

C
P(x,s) = R(s)e™ /¢ + L(s)e™/.

If we apply the condition that u(dg, t) = 0, we learn that /(t) is a
reflection of r(t), delayed by 2d;/c and multiplied by -1:

U(x,s)
P(x,s)
A(x)

S tanh (s(x — dj)/c)

B(x,s) =
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Resonances of a Nasal Consonant

Fujimura proposed computing the resonances of a nasal consonant
by finding the zeros of the total susceptance,

B(s) = Bp(s) + Bn(s) + Bm(s)

For the consonant /n/, Fujimura assumed that the mouth cavity
has zero volume, thus B,(s) = 0, so resonances of /n/ are the
zeros of Bj(s) = Bn(s) + By(s).

The resonances of /m/ and /n/ are then modeled by the equation

B,'(S) = —Bm(S)
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Anti-resonance

The anti-resonance (the zeros of the transfer function) are the
frequencies at which
Bm(s) = o0
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Conclusion: Topics for Exam

@ Loudness: Intensity, Loudness Level, Masking
@ Vocoder: Voiced, Unvoiced, Spectral shape

e Not covered: Brownian motion, relaxation oscillator
@ Pitch: Autocorrelation, Narrowband signals

e Not covered: Gammatone filters

@ Nasals: Laplace Transform, Plane Waves, Susceptance
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