Laplace Transform	Properties	Waves	Lips	Glottis	Conclusions

Lecture 7: Analysis of Nasal Consonants

Mark Hasegawa-Johnson

ECE 537: Speech Processing Fundamentals

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Laplace Transform	Properties	Waves	Lips	Glottis	Conclusions

- 2 Properties of the Laplace Transform
- Solutions to the Acoustic Wave Equation
- 4 Boundary Condition at the Lips
- 5 Boundary Condition at the Glottis

Laplace Transform	Properties	Waves	Lips	Glottis	Conclusions
●○○○○○○○○	00	00000000	00000	00000	00
Outline					

1 The Two-Sided Laplace Transform

- 2 Properties of the Laplace Transform
- 3 Solutions to the Acoustic Wave Equation
- 4 Boundary Condition at the Lips
- 5 Boundary Condition at the Glottis

The Two	Cided Lanler	. Tuanafau			
000000000	00	00000000	00000	00000	00
Laplace Transform	Properties	Waves	Lips	Glottis	Conclusions

The Two-Sided Laplace Transform

$$X(s) = \int_{-\infty}^{\infty} x(t) e^{-st} dt$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Laplace Transform
cooocococoProperties
coWaves
coococococoLips
coococococoGlottis
coococococoConclusions
coWhy You've Never Seen a Two-Sided Laplace Transform
Before

$$X(s) = \int_{-\infty}^{\infty} x(t) e^{-st} dt$$

Warning: here are a few signals for which X(s) fails to converge for any value of *s*:

$$\begin{aligned} x(t) &= 1\\ x(t) &= \cos(200\pi t)\\ x(t) &= e^{-0.1t} \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Laplace Transform	Properties	Waves	Lips	Glottis	Conclusions
○○○●○○○○○○	00	00000000	00000	00000	00
Why It's Use	eful Anywa	ау			

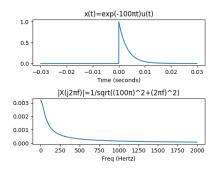
- For practical purposes, the two-sided Laplace transform only converges for two types of signals:
 - Exponentially-damped causal signals
 - Finite-duration, finite-amplitude signals
- ... but if it converges, it is way, way, way easier to work with than any other type of transform.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Laplace Transform	Properties	Waves	Lips	Glottis	Conclusions
000000000	00	00000000	00000	00000	00
Example: C	ausal Expo	onential			

$$\begin{aligned} x(t) &= e^{at}u(t) \\ X(s) &= \int_{-\infty}^{\infty} x(t)e^{-st}dt \\ &= \frac{1}{s-a} \end{aligned}$$

The above transform is valid for $\Re(s) > \Re(a)$.

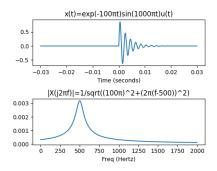


Laplace Transform	Properties	Waves	Lips	Glottis	Conclusions
○000000000	00	00000000	00000	00000	00
Example: D	amped Sir	nusoid			

$$x(t) = e^{(a+j\omega)t}u(t)$$

$$egin{aligned} X(s) &= \int_{-\infty}^{\infty} x(t) e^{-st} dt \ &= rac{1}{s-(a+j\omega)} \end{aligned}$$

The above transform is valid for $\Re(s) > \Re(a)$.

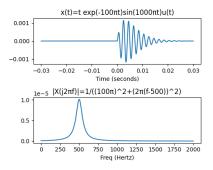


0000000000	00	0000000	00000	00000	00
Example: (Jammatone				

$$x(t) = t e^{(a+j\omega)t} u(t)$$

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$$
$$= \left(\frac{1}{s - (a + j\omega)}\right)^{2}$$

The above transform is valid for $\Re(s) > \Re(a)$.

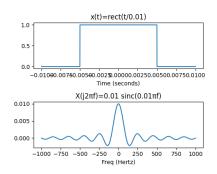


▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Laplace Transform	Properties	Waves	Lips	Glottis	Conclusions
	00	0000000	00000	00000	00
Example: I	Rectangle				

$$\begin{aligned} x(t) &= \operatorname{rect}\left(\frac{t}{T}\right) = \begin{cases} 1 & |t| \leq \frac{T}{2} \\ 0 & \text{otherwise} \end{cases} \\ X(s) &= \frac{1}{s} \left(e^{sT/2} - e^{-sT/2}\right) \\ &= \frac{2}{s} \sinh\left(\frac{sT}{2}\right), \end{aligned}$$

Like the tranforms of every other finite-duration, finite-amplitude signal, the above transform is valid for all finite values of *s*.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 Laplace Transform
 Properties
 Waves
 Lips
 Glottis
 Conclusions

 O00000000
 00
 00000000
 000000
 000000
 000000

 Hyperbolic Functions
 Vaves
 Vaves
 Vaves
 Vaves
 Vaves

The three main hyperbolic functions are:

$$\cosh(x) = \frac{1}{2} (e^{x} + e^{-x})$$
$$\sinh(x) = \frac{1}{2} (e^{x} - e^{-x})$$
$$\tanh(x) = \frac{\sinh(x)}{\cosh(x)}$$

Notice that hyperbolic functions are just like trigonometric functions, but easier:

$$\cos(\theta) = \frac{1}{2} \left(e^{j\theta} + e^{-j\theta} \right)$$
$$\sin(\theta) = \frac{1}{2j} \left(e^{j\theta} - e^{-j\theta} \right)$$
$$\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$$

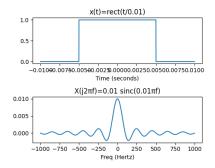
Laplace Transform	Properties	Waves	Lips	Glottis	Conclusions
○○○○○○○○●	00	00000000	00000	00000	00
Example: Re	ectangle				

$$x(t) = \operatorname{rect}\left(\frac{t}{T}\right)$$

$$X(s) = \frac{2}{s} \sinh\left(\frac{sT}{2}\right)$$

In particular, if we plug in $s = j\omega$, we get that

$$X(j\omega) = T\operatorname{sinc}\left(\frac{\omega T}{2}\right)$$



Laplace Transform	Properties	Waves	Lips	Glottis	Conclusions
0000000000	●○	0000000	00000	00000	
Outline					

- 1 The Two-Sided Laplace Transform
- 2 Properties of the Laplace Transform
- 3 Solutions to the Acoustic Wave Equation
- 4 Boundary Condition at the Lips
- 5 Boundary Condition at the Glottis

Laplace Transform	Properties	Waves	Lips	Glottis	Conclusions
000000000	○●	00000000	00000	00000	00
Delay Proper	ty				

lf

$$y(t)=x(t-d),$$

then

$$Y(s) = \int_{-\infty}^{\infty} y(t)e^{-st}dt$$
$$= X(s)e^{-sd}$$

Laplace Transform	Properties	Waves	Lips	Glottis	Conclusions
	00	●○○○○○○	00000	00000	00
Outline					

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

- 1 The Two-Sided Laplace Transform
- 2 Properties of the Laplace Transform
- 3 Solutions to the Acoustic Wave Equation
- ④ Boundary Condition at the Lips
- 5 Boundary Condition at the Glottis

Laplace Transform	Properties	Waves	Lips	Glottis	Conclusions
0000000000	00	○●○○○○○○	00000	00000	00
The One D	imonsional		otion		

The One-Dimensional Wave Equation

No matter what type of wave you're talking about (water, radio, light, sound, Slinky), they are all written in exactly this way:

$$\frac{\partial^2 p}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2},$$

where t = time, x = position, c = speed of the wave, andp(x, t) is the quantity that moves in waves.

CC-SA 3.0,

https://commons.wikimedia.org/wiki/File:

2006-02-04_Metal_spiral.jpg

Laplace Transform	Properties	Waves	Lips	Glottis	Conclusions
0000000000	00	○0●00000	00000	00000	00
Solution to tl	he Wave E	quation			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

$$\frac{\partial^2 p(x,t)}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 p(x,t)}{\partial t^2},$$

The general form of the solution is:

$$p(x,t) = r\left(t - \frac{x}{c}\right) + l\left(t + \frac{x}{c}\right)$$

where r(t) is a rightward wave, and l(t) is a leftward wave.

Laplace Transform of the Solution to the Wave Equation

$$p(x,t) = r\left(t - \frac{x}{c}\right) + l\left(t + \frac{x}{c}\right)$$

Let's take the Laplace transform of that:

$$P(x,s) = \int_{-\infty}^{\infty} p(x,t)e^{-st}dt$$
$$= R(s)e^{-xs/c} + L(s)e^{xs/c}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

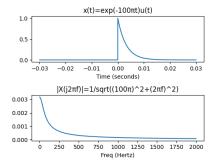
Laplace Transform	Properties	Waves	Lips	Glottis	Conclusions
0000000000	00	○000€000	00000	00000	00
Example: C	ausal Expo	onential			

For example, suppose:

$$p(x,t) = e^{a\left(t-\frac{x}{c}\right)}u\left(t-\frac{x}{c}\right)$$

Its transform is just

$$P(x,s)=\frac{1}{s-a}e^{-sx/c}$$



Laplace Transform	Properties	Waves	Lips	Glottis	Conclusions
000000000	00	○0000●00	00000	00000	
Volume Velo	city				

- A wave equation is always caused by the trading of energy between two quantities, e.g., between electricity and magnetism, or between kinetic and potential energy in a Slinky or guitar string.
- In acoustics, pressure = potential energy, velocity = kinetic energy.
- In a tube like the vocal tract, instead of using average velocity, it makes more sense to use volume velocity.

Definition: Volume Velocity is average air particle velocity, multiplied by the cross-sectional area of the tube.

$$\left[\frac{m}{s}\right] \times \left[m^2\right] = \left[\frac{m^3}{s}\right]$$

• Why this makes sense: if you blow 1 liter/second into the small end of a tube, you expect 1 liter/second to come out the big end.

Laplace Transform	Properties	Waves	Lips	Glottis	Conclusions
0000000000	00	○00000●0	00000	00000	
Volume Velo	city				

The relationship between pressure and volume velocity is:

$$p(x,t) = r\left(t - \frac{x}{c}\right) + l\left(t + \frac{x}{c}\right),$$

$$u(x,t) = \frac{A(x)}{\rho c}\left(r\left(t - \frac{x}{c}\right) - l\left(t + \frac{x}{c}\right)\right),$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

where A(x) is cross-sectional area, and ρ is the density of air.

The relationship between pressure and volume velocity is:

$$P(x,s) = R(s)e^{-sx/c} + L(s)e^{sx/c},$$
$$U(x,s) = \frac{A(x)}{\rho c} \left(R(s)e^{-sx/c} - L(s)e^{sx/c} \right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Laplace Transform	Properties	Waves	Lips	Glottis	Conclusions
0000000000	00	00000000	●○○○○	00000	00
Outline					

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

- 1 The Two-Sided Laplace Transform
- 2 Properties of the Laplace Transform
- 3 Solutions to the Acoustic Wave Equation
- 4 Boundary Condition at the Lips
- 5 Boundary Condition at the Glottis

000000000	00	0000000	0000	00000	00
Radiation f	rom the Lii	าร			

The cross-sectional area of the room is much larger than the cross-sectional area of your lips. No matter how much air you blow out of your lips, you are not going to appreciably change the air pressure in the room. We can express this constraint by saying that, at the lips $(x = d_i)$,

$$p(d_I, t) \approx 0$$

 $P(d_I, s) \approx 0$

Recall that

$$p(x,t) = r\left(t - \frac{x}{c}\right) + l\left(t + \frac{x}{c}\right),$$

$$P(x,s) = R(s)e^{-sx/c} + L(s)e^{sx/c}.$$

If we apply the condition that $p(d_l, t) = 0$, we learn that l(t) is a reflection of r(t), delayed by $2d_l/c$ and multiplied by -1:

$$I(t) = -r\left(t - \frac{2d_l}{c}\right)$$
$$L(s) = -R(s)e^{-2sd_l/c}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Laplace Transform	Properties	Waves	Lips	Glottis	Conclusions
0000000000	00	00000000	○○○●○	00000	00
Reflections fr	om the Lip)S			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

The equation $p(d_l, t) = 0$ is satisfied if l(t) is a reflection of r(t), multiplied by -1:

$$l(t) = -r\left(t - \frac{x - 2d_l}{c}\right)$$
$$L(s) = -R(s)e^{-2sd_l/c}$$

Fujimura had the following brilliant insight. (1) Both pressure and velocity are proportional to R(s). (2) R(s) is totally arbitrary, it can be anything. (3) The math will be easier if we just get rid of R(s).

He did this by defining a quantity called "susceptance" (B(x, s)), the ratio of volume velocity over pressure:

$$B(x,s) = \frac{U(x,s)}{P(x,s)}$$
$$= \frac{A(x)}{\rho c} \left(\frac{R(s)e^{-sx/c} - L(s)e^{sx/c}}{R(s)e^{-sx/c} + L(s)e^{sx/c}} \right)$$
$$= \frac{A(x)}{\rho c} \left(\frac{e^{-s(x-d_l)/c} + e^{s(x-d_l)/c}}{e^{-s(x-d_l)/c} - e^{s(x-d_l)/c}} \right),$$

where the last line takes advantage of the constraint at the lips:

$$L(s) = -R(s)e^{-2sd_l/c}$$

Laplace Transform	Properties	Waves	Lips	Glottis	Conclusions
	00	00000000	00000	•••••	00
Outline					

- 1 The Two-Sided Laplace Transform
- 2 Properties of the Laplace Transform
- 3 Solutions to the Acoustic Wave Equation
- 4 Boundary Condition at the Lips
- 5 Boundary Condition at the Glottis

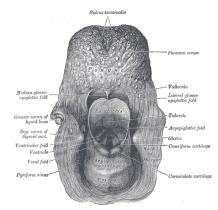
Laplace Transform	Properties	Waves	Lips	Glottis	Conclusions
0000000000	00	00000000	00000	○●000	
Closure at th	e Glottis				

The cross-sectional area of the glottis is much smaller than the cross-sectional area of your vocal tract.

No matter how high the pressure gets inside the vocal tract, it is not able to push very much air back through the glottis. We can express this constraint by saying that, at the glottis $(x = d_g)$,

$$u(d_g, t) pprox 0$$

 $U(d_g, s) pprox 0$



Public Domain, https: //commons.wikimedia.org/wiki/File:Gray955.png

Laplace Transform Properties Waves Lips Glottis Conclusions of The Zero-Velocity Constraint at the Glottis

Recall that

$$u(x,t) = \frac{A(x)}{\rho c} \left(r \left(t - \frac{x}{c} \right) - l \left(t + \frac{x}{c} \right) \right),$$

$$U(x,s) = \frac{A(x)}{\rho c} \left(R(s) e^{-sx/c} - L(s) e^{sx/c} \right).$$

If we apply the condition that $u(d_g, t) = 0$, we learn that l(t) is a reflection of r(t), delayed by $2d_g/c$ and multiplied by +1:

$$l(t) = r\left(t - \frac{x - 2d_g}{c}\right)$$
$$L(s) = R(s)e^{-2sd_g/c}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Laplace Transform	Properties	Waves	Lips	Glottis	Conclusions
0000000000	00	00000000	00000	000●0	00
Reflections fr	om the Glo	ottis			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

The equation $u(d_g, t) = 0$ is satisfied if l(t) is a reflection of r(t), multiplied by -1:

$$l(t) = r\left(t - rac{x - 2d_g}{c}
ight)$$

 $L(s) = R(s)e^{-2sd_g/c}$

Fujimura had the following brilliant insight. (1) Both pressure and velocity are proportional to R(s). (2) R(s) is totally arbitrary, it can be anything. (3) The math will be easier if we just get rid of R(s).

He did this by defining a quantity called "susceptance" (B(x, s)), the ratio of volume velocity over pressure:

$$B(x,s) = \frac{U(x,s)}{P(x,s)}$$
$$= \frac{A(x)}{\rho c} \left(\frac{R(s)e^{-sx/c} - L(s)e^{sx/c}}{R(s)e^{-sx/c} + L(s)e^{sx/c}} \right)$$
$$= \frac{A(x)}{\rho c} \left(\frac{e^{-s(x-d_g)/c} - e^{s(x-d_g)/c}}{e^{-s(x-d_g)/c} + e^{s(x-d_g)/c}} \right)$$

where the last line takes advantage of the constraint at the glottis:

$$L(s)=R(s)e^{-2sd_g/c}$$

,

Laplace Transform	Properties	Waves	Lips	Glottis	Conclusions
	00	00000000	00000	00000	●○
Outline					

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

- 1 The Two-Sided Laplace Transform
- 2 Properties of the Laplace Transform
- 3 Solutions to the Acoustic Wave Equation
- 4 Boundary Condition at the Lips
- 5 Boundary Condition at the Glottis

Laplace Transform	Properties	Waves	Lips	Glottis	Conclusions
	00	00000000	00000	00000	○●
Conclusions					

• A Laplace transform is a Fourier transform, but easier:

$$X(s) = \int_{-\infty}^{\infty} x(t) e^{-st} dt$$

• Every one-dimensional wave equation has the following solution:

$$P(x,s) = R(s)e^{-sx/c} + L(s)e^{sx/c}$$
$$U(x,s) \propto R(s)e^{-sx/c} - L(s)e^{sx/c}$$

• Air pressure drops to nearly zero at the lips, causing a reflection inside the vocal tract:

$$L(s) = -R(s)e^{-sd_l/c}$$

• Volume velocity drops to nearly zero at the glottis, causing a reflection inside the vocal tract:

$$L(s) = R(s)e^{-sd_g/c}$$