Vocoder	Random Signals	Power Spectrum	Autocorrelation	Bandpass	Synthesis	Conclusions

Lecture 5, The Vocoder, Part 2: Unvoiced Sounds

Mark Hasegawa-Johnson

ECE 537: Speech Processing Fundamentals

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Vocoder	Random Signals	Power Spectrum	Autocorrelation	Bandpass	Synthesis	Conclusions

- 2 Random Signals
- 3 Power Spectrum
- 4 Autocorrelation
- Spectrum of a Bandpass-Filtered White Noise Signal
- 6 Speech Synthesis: Adjusting the Level of Each Band

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Conclusions

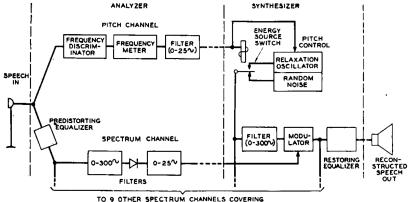
Vocoder ●○○	Random Signals 00000	Power Spectrum	Autocorrelation	Bandpass 000000	Synthesis 000000	Conclusions 00
Outlin	ie					

- 2 Random Signals
- 3 Power Spectrum
- 4 Autocorrelation
- 5 Spectrum of a Bandpass-Filtered White Noise Signal
- 6 Speech Synthesis: Adjusting the Level of Each Band

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Conclusions

The Vocoder Block Diagram



FREQUENCY RANGE 300-30000 IN 300 V STEPS

FIG. 2. Schematic arrangement of the Vocoder.

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

		Summarv				
Vocoder ○O●	Random Signals 00000	Power Spectrum	Autocorrelation	Bandpass 000000	Synthesis 000000	Conclusions

- What is the spectrum of a "relaxation oscillator"?
 - To answer this question, we need to learn about the Discrete-Time Fourier Series (DTFS).
 - What happens when you bandpass filter it?
 - What happens when you adjust its level?
- What is the spectrum of a "random noise"?
 - To answer this question, we need to learn about autocorrelation and the power spectrum.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- What happens when you bandpass filter it?
- What happens when you adjust its level?

Vocoder 000	Random Signals ●○○○○	Power Spectrum	Autocorrelation	Bandpass 000000	Synthesis 000000	Conclusions 00
Outlir	ne					

- 1 The Vocoder
- 2 Random Signals
- 3 Power Spectrum
- 4 Autocorrelation
- 5 Spectrum of a Bandpass-Filtered White Noise Signal
- 6 Speech Synthesis: Adjusting the Level of Each Band

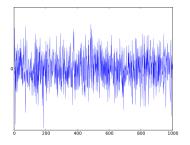
▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

7 Conclusions

Vocoder 000	Random Signals ○●000	Power Spectrum	Autocorrelation	Bandpass 000000	Synthesis 000000	Conclusions 00
Rando	om Signals					

Let's start out with a zero-mean random signal, x[n].

- Random signal: each x[n] is a random number.
- Zero mean: *E*[*x*[*n*]] = 0 (for all *n*).



CC-SA 3.0, https://commons.wikimedia.org/wiki/File: White_noise.svg ←Listen→

Vocader Random Signals Power Spectrum Autocorrelation Bandpass Synthesis Conclusions 000 0000000 0000000 0000000 0000000 0000000 00 Properties a Random Signal Might Have 0000000 0000000 0000000 00 00

- A random signal is **zero-mean** if E[x[n]] = 0 for all *n*.
- A random signal is **unit-power** if $E\left[|x[n]|^2\right] = 1$, regardless of *n*.

• A random signal is white noise, a.k.a. uncorrelated if $E[x[n]x[m]^*] = 0$ for all $n \neq m$.

Vocoder Random Signals Power Spectrum Autocorrelation Bandpass Synthesis Conclusions 000 00 0000000 0000000 0000000 0000000 00 Wide-Sense Stationary Signals Signals 0000000 0000000 0000000 0000000 00

A random signal is called "wide-sense stationary (WSS)" if its mean, variance, and covariance are independent of n:

- $E[x[n]] = \mu_x$, regardless of n.
- $E\left[|x[n] \mu_x|^2\right] = \sigma_x^2$, regardless of n.
- The **autocorrelation** and **autocovariance** of a WSS signal are defined to be

$$R_{xx}[m] = E[x[n]x^*[n-m]]$$

$$K_{xx}[m] = E[(x[n] - \mu_x)(x[n-m] - \mu_x)^*],$$

regardless of n.

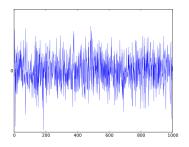
We'll often use zero-mean, unit-variance white noise as a building block:

•
$$E[x[n]] = 0$$

•
$$R_{xx}[m] = \delta[m] =$$

$$\begin{cases} 1 \quad m = 0 \\ 0 \quad m \neq 0 \end{cases}$$

Note: if we add one more assumption (x[n] is Gaussian), then it's also true that x[n] are i.i.d.



 $\begin{array}{c} \mathsf{CC}\text{-SA 3.0,} \\ \texttt{https://commons.wikimedia.org/wiki/File:} \\ \texttt{White_noise.svg} \\ \leftarrow \texttt{Listen} \rightarrow \end{array}$

・ロト ・ 同ト ・ ヨト ・ ヨト

Vocoder 000	Random Signals 00000	Power Spectrum ●○○○○○○○	Autocorrelation	Bandpass 000000	Synthesis 000000	Conclusions
Outlir	ne					

- 1 The Vocoder
- 2 Random Signals
- 3 Power Spectrum
- 4 Autocorrelation
- 5 Spectrum of a Bandpass-Filtered White Noise Signal
- 6 Speech Synthesis: Adjusting the Level of Each Band

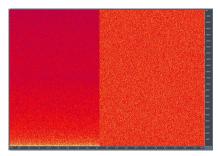
▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

7 Conclusions

The Fourier Transform of a random signal is a random vector.

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$

- e^{-jωn} is a constant
- x[n] is random
- X(ω) is the weighted sum of the random variables x[n]

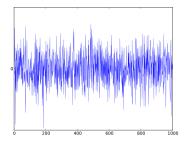


Spectrogram of pink noise (left) and white noise (right), shown with linear frequency axis (vertical). CC-SA 3.0, https: //commons.wikimedia.org/wiki/File:Noise.jpg

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The Fourier Transform of a zero-mean random signal is a zero-mean random vector.

$$E[X(\omega)] = E\left[\sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}\right]$$
$$= \sum_{n=-\infty}^{\infty} E[x[n]]e^{-j\omega n}$$
$$= 0$$



CC-SA 3.0, https://commons.wikimedia.org/wiki/File: White_noise.svg

Vocoder Random Signals Power Spectrum Autocorrelation Bandpass Synthesis Conclusions 000 00000 000000 000000 000000 000000 000000 000000 000000 000000 000000 00000000 0000000 00000000

The magnitude-squared Fourier Transform is also a random variable, but its expected value is not zero.

$$E\left[|X(\omega)|^{2}\right] = E\left[\left(\sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}\right)\left(\sum_{m=-\infty}^{\infty} x[m]e^{-j\omega m}\right)^{*}\right]$$
$$= \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} E\left[x[n]x^{*}[m]\right]e^{-j\omega(n-m)}$$
$$= \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} R_{xx}[n-m]e^{-j\omega(n-m)}$$

Spectrogram of pink noise (left) and white noise (right), shown with linear frequency axis (vertical).

CC-SA 3.0, https://commons.wikimedia.org/wiki/File:Noise.jpg

For most signals, the formula on the previous slide gives $E\left[|X(\omega)|^2\right] \rightarrow \infty$. To make it easier to work with, Norbert Wiener defined the power spectrum to be the time-normalized expected value of the magnitude squared Fourier transform:

$$R_{xx}(\omega) = \lim_{N \to \infty} \frac{1}{N} E \left[\left| \sum_{n=-\left(\frac{N-1}{2}\right)}^{\left(\frac{N-1}{2}\right)} x[n] e^{-j\omega n} \right|^2 \right]$$

Most practical signals are not infinite length. Instead, we usually want to just compute the Fourier transform over N samples, say, $0 \le n \le N-1$. In this case we can define the short-time power spectrum to be

$$R_{xx}(\omega) = rac{1}{N} E\left[\left| \sum_{n=0}^{N-1} x[n] e^{-j\omega n} \right|^2
ight]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Vocoder Random Signals Power Spectrum Autocorrelation Bandpass Synthesis Conclusions 000 00000 0 0000000 0000000 0000000 00

For example, consider white noise: E[x[n]x[m]] = 0 unless n = m. In this case,

$$R_{xx}(\omega) = \frac{1}{N} E\left[|X(\omega)|^2\right]$$

= $\frac{1}{N} \sum_{n=0}^{N-1} \sum_{m=0}^{N-1} E[x[n]x^*[m]] e^{-j\omega(n-m)}$
= $\frac{1}{N} \sum_{n=0}^{N-1} E[|x[n]|^2]$
= $E[|x[n]|^2]$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Vocoder Random Signals Power Spectrum Autocorrelation Bandpass Synthesis Conclusions 0000 000000 0000000 0000000 0000000 0000000 00 Example: Power Spectrum of White Noise

For example, consider white noise: E[x[n]x[m]] = 0 unless n = m. In this case,

$$R_{xx}(\omega) = E\left[|x[n]|^2\right]$$

This is why we call it white noise: its power spectrum is a constant, $R_{xx}(\omega) = E[|x[n]|^2]$, at every frequency. For example, for zero-mean unit-variance white noise, $R_{xx}(\omega) = E[|x[n]|^2] = \sigma_x^2 = 1$.

Spectrogram of pink noise (left) and white noise (right), shown with linear frequency axis (vertical).

CC-SA 3.0, https://commons.wikimedia.org/wiki/File:Noise.jpg

Vocoder 000	Random Signals 00000	Power Spectrum	Autocorrelation •••••••	Bandpass 000000	Synthesis 000000	Conclusions
Outlir	ne					

- 1 The Vocoder
- 2 Random Signals
- 3 Power Spectrum
- 4 Autocorrelation
- 5 Spectrum of a Bandpass-Filtered White Noise Signal
- 6 Speech Synthesis: Adjusting the Level of Each Band

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

7 Conclusions

Vocoder Random Signals Power Spectrum Autocorrelation Bandpass Synthesis Conclusions occord and the second second

Power Spectrum of a WSS Signal

1

Remember that WSS signals have an autocorrelation function that doesn't depend on n:

$$R_{xx}[m] = E[x[n]x^*[n-m]]$$

For a WSS signal, it's possible to use a dramatic shortcut to compute the power spectrum:

$$R_{xx}(\omega) = \frac{1}{N} E\left[\left| \sum_{n} x[n] e^{-j\omega n} \right|^{2} \right]$$

$$= \frac{1}{N} E\left[\left(\sum_{n} x[n] e^{-j\omega n} \right) \left(\sum_{n-m} x[n-m] e^{-j\omega(n-m)} \right)^{*} \right]$$

$$= \frac{1}{N} \sum_{n} \sum_{m} E[x[n] x^{*}[n-m]] e^{-j\omega m}$$

$$= \sum_{m} R_{xx}[m] e^{-j\omega m}$$

Let me just repeat that, since it's the most important formula today.

$$R_{xx}(\omega) = \sum_{m} R_{xx}[m] e^{-j\omega m}$$

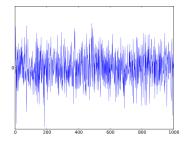
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

For example, consider white noise:

$$R_{xx}[m] = \delta[m] = \begin{cases} 1 & m = 0\\ 0 & m \neq 0 \end{cases}$$

So its power spectrum is

$$R_{xx}(\omega) = \mathcal{F}\left\{\delta[m]\right\} = 1$$



 $\begin{array}{c} CC{-}SA \; 3.0, \\ https://commons.wikimedia.org/wiki/File: \\ White_noise.svg \\ https://upload.wikimedia.org/wikipedia/commons/ \\ 9/98/White-noise-sound-20sec-mono-44100Hz. \\ ogg \leftarrow Listen \rightarrow \end{array}$

Brownian motion, as shown in the video, is motion with independent random increments, i.e., if x[n] is the position and v[n] is an independent increment, then

x[n] = ax[n-1] + bv[n]

Natural Brownian motion uses a = b = 1, but if we want a WSS signal, we need to use $b^2 = 1 - a^2$.

CC-SA 3.0,

https://commons.wikimedia.org/wiki/File:

Vocoder coo Random Signals cooco Power Spectrum coococo Autocorrelation coococo Bandpass coococo Synthesis coococo Conclusions co Example: Brownian Motion Supervision <

Suppose we assume v[n] is zero-mean unit-variance white noise, $b^2 = 1 - a^2$, and x[n] = ax[n-1] + bv[n], so that

$$E[x[n]x[n-1]] = E[(ax[n-1] + bv[n])x[n-1]] = a$$

$$E[x[n]x[n-2]] = E[(a^{2}x[n-2] + abv[n-1] + bv[n])x[n-2]] = a^{2}$$

$$R_{xx}[m] = a^{\mid m}$$

÷

The power spectrum is

$$R_{\mathrm{xx}}(\omega) = \mathcal{F}\left\{a^{|m|}
ight\} = rac{b^2}{\left|1 - ae^{-j\omega}
ight|^2} = rac{1}{\mathcal{O}\left\{\omega^2
ight\}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

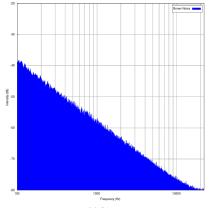
Vocoder 000	Random Signals 00000	Power Spectrum	Autocorrelation 000000000	Bandpass 000000	Synthesis 000000	Conclusions

• Impulse trains and white noise both have flat spectra.

 $|X_k|^2 = R_{xx}(\omega) = 1$

 Square waves and Brownian motion both have Brownian spectra.

$$|X_k|^2 = R_{xx}(\omega) = \frac{1}{\mathcal{O}\left\{\omega^2\right\}}$$



CC-SA 3.0, https://commons.wikimedia.org/wiki/File: Brown_noise_spectrum.svg

Vocoder Random Signals Power Spectrum Autocorrelation Bandpass Synthesis Conclusions 000 000000 00000000 00000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 00000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 00000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 00000000 00000000 00000000 <t

Autocorrelation isn't a function of n, so it doesn't hurt if we average it over many samples of n:

$$R_{xx}[m] = \frac{1}{N} \sum_{n=0}^{N-1} R_{xx}[m] = \frac{1}{N} E\left[\sum_{n=0}^{N-1} x[n] x^*[n-m]\right]$$
$$= \frac{1}{N} E[x[m] * x^*[-m]]$$

• Convolution: Flip, shift, multiply, and add:

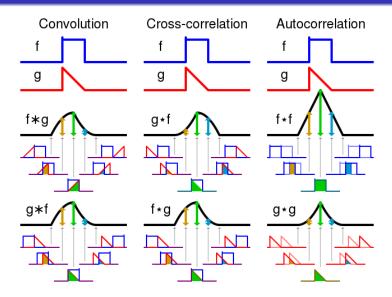
$$x[m] * h[m] = \sum_{n} x[n]h[m-n]$$

• Correlation: DON'T flip. Just shift, multiply and add:

$$x[m] * h^*[-m] = \sum_n x[n]h^*[n-m]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Vocoder Random Signals Power Spectrum Autocorrelation Bandpass Synthesis Conclusions Correlation: Shift, Multiply and Add Add Shift, Shift,



CC-SA 3.0, https://commons.wikimedia.org/wiki/File:Comparison_convolution_correlation.svg

Vocoder 000	Random Signals 00000	Power Spectrum	Autocorrelation	Bandpass •••••	Synthesis 000000	Conclusions 00
Outlir	ne					

- The Vocoder
- 2 Random Signals
- 3 Power Spectrum
- 4 Autocorrelation
- 5 Spectrum of a Bandpass-Filtered White Noise Signal
- 6 Speech Synthesis: Adjusting the Level of Each Band
- Conclusions

Facts	about con	volution				
Vocoder 000	Random Signals 00000	Power Spectrum	Autocorrelation	Bandpass ○●0000	Synthesis 000000	Conclusions 00

Convolution is commutative:

$$h[n] * x[n] = x[n] * h[n]$$

It is also associative:

$$g[n] * (x[n] * h[n]) = (g[n] * x[n]) * h[n]$$

Vocoder	Random Signals	Power Spectrum	Autocorrelation	Bandpass	Synthesis	Conclusions
000	00000		000000000	00●000	000000	00
		L D'				

The Vocoder Block Diagram

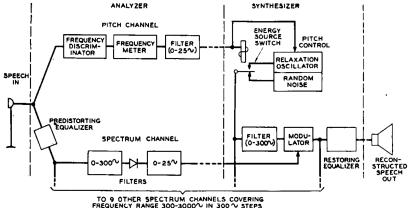


FIG. 2. Schematic arrangement of the Vocoder.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Vocoder Random Signals Power Spectrum Autocorrelation coolooco Southers Conclusions coolooco coolooco

Spectrum of a Bandpass-Filtered Noise

Suppose

$$y[n] = h[n] * x[n]$$

The autocorrelation of y[n] is defined to be $R_{yy}[m] = E[y[n]y^*[n-m]]$. But remember we can estimate it using the **short-time autocorrelation**:

$$R_{yy}[n] = \frac{1}{N} E[y[n] * y^*[-n]]$$

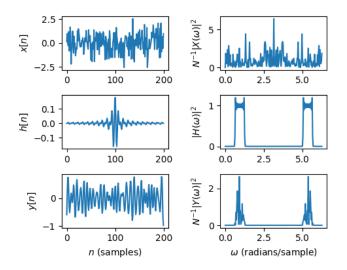
= $\frac{1}{N} E[h[n] * x[n] * h^*[-n] * x^*[-n]]$
= $\frac{1}{N} (h[n] * h^*[-n] * E[x[n] * x^*[-n]])$
= $h[n] * h^*[-n] * R_{xx}[n]$

Vocoder Random Signals Power Spectrum Autocorrelation Bandpass Over Spectrum Over Spec

Spectrum of a Bandpass-Filtered Noise

$$R_{yy}[n] = h[n] * h^*[-n] * R_{xx}[n]$$
$$R_{yy}(\omega) = |H(\omega)|^2 R_{xx}(\omega)$$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

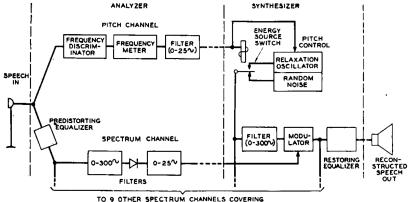
Vocoder 000	Random Signals 00000	Power Spectrum	Autocorrelation	Bandpass 000000	Synthesis •••••	Conclusions 00	
Outline							

- The Vocoder
- 2 Random Signals
- 3 Power Spectrum
- 4 Autocorrelation
- 5 Spectrum of a Bandpass-Filtered White Noise Signal
- 6 Speech Synthesis: Adjusting the Level of Each Band

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusions

The Vocoder Block Diagram



FREQUENCY RANGE 300-3000 IN 300 V STEPS

FIG. 2. Schematic arrangement of the Vocoder.

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

Suppose that x[n] and y[n] are two uncorrelated random signals, and we add them together:

$$z[n] = ax[n] + by[n]$$

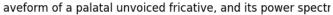
What are the autocorrelation and power spectrum of z[n]?

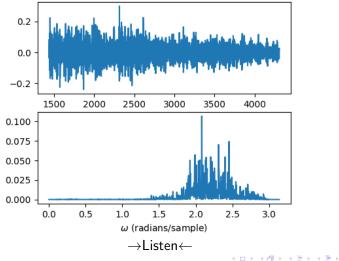
$$\begin{aligned} R_{zz}[m] &= E\left[z[n]z^*[n-m]\right] \\ &= E\left[(ax[n]+by[n])\left(a^*x^*[n-m]+b^*y^*[n-m]\right)\right] \\ &= |a|^2 R_{xx}[m]+|b|^2 R_{yy}[m], \end{aligned}$$

and

$$R_{zz}(\omega) = |a|^2 R_{xx}(\omega) + |b|^2 R_{yy}(\omega)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00





JOG C

э

Start with white noise,

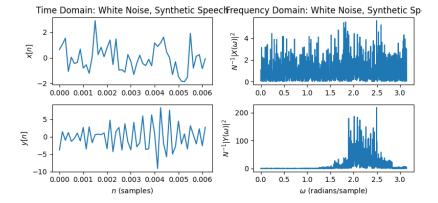
$$R_{xx}(\omega) = 1$$

Filter by a set of 10 bandpass filters $H_I(\omega)$, each about 300Hz wide, then adjust the amplitude of each one (A_I) to match the amplitude of the speech signal in the same band:

$$R_{yy}(\omega) = \sum_{l=1}^{10} A_l \sum_{k=0}^{N-1} |H_l(\omega)|^2 R_{xx}(\omega)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Vocoder 000	Random Signals 00000	Power Spectrum	Autocorrelation	Bandpass 000000	Synthesis ○○○○○●	Conclusions	
Synthetic Speech							



 \rightarrow Listen \leftarrow

Vocoder	Random Signals	Power Spectrum	Autocorrelation	Bandpass	Synthesis	Conclusions	
000	00000		000000000	000000	000000	●○	
Outline							

- 1 The Vocoder
- 2 Random Signals
- 3 Power Spectrum
- 4 Autocorrelation
- 5 Spectrum of a Bandpass-Filtered White Noise Signal
- 6 Speech Synthesis: Adjusting the Level of Each Band

Conclusions

 Vocoder 000
 Random Signals 0000
 Power Spectrum 0000000
 Autocorrelation 0000000
 Bandpass 000000
 Synthesis 000000
 Conclusions 000000

 Conclusions: How to scale the bands of a power spectrum to make fricatives

- White noise has an autocorrelation of R_{xx}[m] = δ[m], and a power spectrum of R_{xx}(ω) = 1.
- Onvolution:

 $y[n] = h[n] * x[n] \quad \leftrightarrow \quad R_{yy}[m] = h[m] * h^*[-m] * R_{xx}[m]$

Linearity:

 $z[n] = ax[n] + by[n] \quad \leftrightarrow \quad R_{zz}[n] = |a|^2 R_{xx}[n] + |b|^2 R_{yy}[n]$