Lecture 5, The Vocoder, Part 2: Unvoiced Sounds

Mark Hasegawa-Johnson

ECE 537: Speech Processing Fundamentals
(1) The Vocoder
(2) Random Signals
(3) Power Spectrum

4 Autocorrelation
(5) Spectrum of a Bandpass-Filtered White Noise Signal
(6) Speech Synthesis: Adjusting the Level of Each Band
(7) Conclusions

Outline

(1) The Vocoder
(2) Random Signals
(3) Power Spectrum

4 Autocorrelation
(5) Spectrum of a Bandpass-Filtered White Noise Signal
(6) Speech Synthesis: Adjusting the Level of Each Band
(7) Conclusions

The Vocoder Block Diagram

TO 9 OTHER SPECTRUM CHANNELS COVERING FREQUENCY RANGE 300-3000~ IN 300~ STEPS

Fig. 2. Schematic arrangement of the Vocoder.

Vocoder Signals Summary

- What is the spectrum of a "relaxation oscillator"?
- To answer this question, we need to learn about the Discrete-Time Fourier Series (DTFS).
- What happens when you bandpass filter it?
- What happens when you adjust its level?
- What is the spectrum of a "random noise"?
- To answer this question, we need to learn about autocorrelation and the power spectrum.
- What happens when you bandpass filter it?
- What happens when you adjust its level?

Outline

(1) The Vocoder

(2) Random Signals
(3) Power Spectrum

4 Autocorrelation
(5) Spectrum of a Bandpass-Filtered White Noise Signal
(6) Speech Synthesis: Adjusting the Level of Each Band
(7) Conclusions

Random Signals

Let's start out with a zero-mean random signal, $x[n]$.

- Random signal: each $x[n]$ is a random number.
- Zero mean: $E[x[n]]=0$ (for all n).

https://commons.wikimedia.org/wiki/File:
White_noise.svg
\leftarrow Listen \rightarrow

Properties a Random Signal Might Have

- A random signal is zero-mean if $E[x[n]]=0$ for all n.
- A random signal is unit-power if $E\left[|x[n]|^{2}\right]=1$, regardless of n.
- A random signal is white noise, a.k.a. uncorrelated if $E\left[x[n] x[m]^{*}\right]=0$ for all $n \neq m$.

Wide-Sense Stationary Signals

A random signal is called "wide-sense stationary (WSS)" if its mean, variance, and covariance are independent of n :

- $E[x[n]]=\mu_{x}$, regardless of n.
- $E\left[\left|x[n]-\mu_{x}\right|^{2}\right]=\sigma_{x}^{2}$, regardless of n.
- The autocorrelation and autocovariance of a WSS signal are defined to be

$$
\begin{aligned}
& R_{x x}[m]=E\left[x[n] x^{*}[n-m]\right] \\
& K_{x x}[m]=E\left[\left(x[n]-\mu_{x}\right)\left(x[n-m]-\mu_{x}\right)^{*}\right]
\end{aligned}
$$

regardless of n.

Example: Zero-Mean, Unit-Variance White Noise

We'll often use zero-mean, unit-variance white noise as a building block:

- $E[x[n]]=0$
- $R_{x x}[m]=\delta[m]=$
$\begin{cases}1 & m=0 \\ 0 & m \neq 0\end{cases}$
Note: if we add one more assumption ($x[n]$ is Gaussian), then it's also true that $x[n]$ are i.i.d.

CC-SA 3.0,
https://commons.wikimedia.org/wiki/File: White_noise.svg \leftarrow Listen \rightarrow

Outline

(1) The Vocoder
(2) Random Signals
(3) Power Spectrum

4 Autocorrelation
(5) Spectrum of a Bandpass-Filtered White Noise Signal
(6) Speech Synthesis: Adjusting the Level of Each Band
(7) Conclusions

-
 Fourier Transform of a Random Signal is a Random Vector

The Fourier Transform of a random signal is a random vector.

$$
X(\omega)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}
$$

- $e^{-j \omega n}$ is a constant
- $x[n]$ is random
- $X(\omega)$ is the weighted sum of the random variables $x[n]$

Spectrogram of pink noise (left) and white noise (right), shown with linear frequency axis

$$
\begin{gathered}
(\text { vertical). } \\
\mathrm{cc}-\mathrm{SA} .0, \mathrm{https}:
\end{gathered}
$$

//commons.wikimedia.org/wiki/File:Noise.jpg

Zero-Mean Random Signal \leftrightarrow Zero-Mean Random Vector

The Fourier Transform of a zero-mean random signal is a zero-mean random vector.

$$
\begin{aligned}
E[X(\omega)] & =E\left[\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}\right] \\
& =\sum_{n=-\infty}^{\infty} E[x[n]] e^{-j \omega n} \\
& =0
\end{aligned}
$$

CC-SA 3.0,
https://commons.wikimedia.org/wiki/File: White_noise.svg

Variance of the Fourier Transform is Interesting

The magnitude-squared Fourier Transform is also a random variable, but its expected value is not zero.

$$
\begin{aligned}
E\left[|X(\omega)|^{2}\right] & =E\left[\left(\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}\right)\left(\sum_{m=-\infty}^{\infty} x[m] e^{-j \omega m}\right)^{*}\right] \\
& =\sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} E\left[x[n] x^{*}[m]\right] e^{-j \omega(n-m)} \\
& =\sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} R_{x x}[n-m] e^{-j \omega(n-m)}
\end{aligned}
$$

Spectrogram of pink noise (left) and white noise (right), shown with linear frequency axis (vertical).

Power Spectrum = Time-Normalized Expected Value of

 the Variance of the Fourier TransformFor most signals, the formula on the previous slide gives $E\left[|X(\omega)|^{2}\right] \rightarrow \infty$. To make it easier to work with, Norbert Wiener defined the power spectrum to be the time-normalized expected value of the magnitude squared Fourier transform:

$$
R_{x x}(\omega)=\lim _{N \rightarrow \infty} \frac{1}{N} E\left[\left|\sum_{n=-\left(\frac{N-1}{2}\right)}^{\left(\frac{N-1}{2}\right)} x[n] e^{-j \omega n}\right|^{2}\right]
$$

Short-Time Power Spectrum

Most practical signals are not infinite length. Instead, we usually want to just compute the Fourier transform over N samples, say, $0 \leq n \leq N-1$. In this case we can define the short-time power spectrum to be

$$
R_{x x}(\omega)=\frac{1}{N} E\left[\left|\sum_{n=0}^{N-1} x[n] e^{-j \omega n}\right|^{2}\right]
$$

Example: Power Spectrum of White Noise

For example, consider white noise: $E[x[n] x[m]]=0$ unless $n=m$. In this case,

$$
\begin{aligned}
R_{x x}(\omega) & =\frac{1}{N} E\left[|X(\omega)|^{2}\right] \\
& =\frac{1}{N} \sum_{n=0}^{N-1} \sum_{m=0}^{N-1} E\left[x[n] x^{*}[m]\right] e^{-j \omega(n-m)} \\
& =\frac{1}{N} \sum_{n=0}^{N-1} E\left[|x[n]|^{2}\right] \\
& =E\left[|x[n]|^{2}\right]
\end{aligned}
$$

Example: Power Spectrum of White Noise

For example, consider white noise: $E[x[n] \times[m]]=0$ unless $n=m$. In this case,

$$
R_{x x}(\omega)=E\left[|x[n]|^{2}\right]
$$

This is why we call it white noise: its power spectrum is a constant, $R_{x x}(\omega)=E\left[|x[n]|^{2}\right]$, at every frequency. For example, for zero-mean unit-variance white noise,
$R_{x x}(\omega)=E\left[|x[n]|^{2}\right]=\sigma_{x}^{2}=1$.

Spectrogram of pink noise (left) and white noise (right), shown with linear frequency axis (vertical).

Outline

(1) The Vocoder
(2) Random Signals
(3) Power Spectrum

4 Autocorrelation
(5) Spectrum of a Bandpass-Filtered White Noise Signal
(6) Speech Synthesis: Adjusting the Level of Each Band
(7) Conclusions

Power Spectrum of a WSS Signal

Remember that WSS signals have an autocorrelation function that doesn't depend on n :

$$
R_{x x}[m]=E\left[x[n] x^{*}[n-m]\right]
$$

For a WSS signal, it's possible to use a dramatic shortcut to compute the power spectrum:

$$
\begin{aligned}
R_{x x}(\omega) & =\frac{1}{N} E\left[\left|\sum_{n} x[n] e^{-j \omega n}\right|^{2}\right] \\
& =\frac{1}{N} E\left[\left(\sum_{n} x[n] e^{-j \omega n}\right)\left(\sum_{n-m} x[n-m] e^{-j \omega(n-m)}\right)^{*}\right] \\
& =\frac{1}{N} \sum_{n} \sum_{m} E\left[x[n] x^{*}[n-m]\right] e^{-j \omega m} \\
& =\sum_{m} R_{x x}[m] e^{-j \omega m}
\end{aligned}
$$

Power Spectrum of a WSS Signal

Let me just repeat that, since it's the most important formula today.

$$
R_{x x}(\omega)=\sum_{m} R_{x x}[m] e^{-j \omega m}
$$

Example: Zero-Mean, Unit-Variance White Noise

For example, consider white noise:

$$
R_{x x}[m]=\delta[m]= \begin{cases}1 & m=0 \\ 0 & m \neq 0\end{cases}
$$

So its power spectrum is

$$
R_{x x}(\omega)=\mathcal{F}\{\delta[m]\}=1
$$

CC-SA 3.0,
https://commons.wikimedia.org/wiki/File: White_noise.svg
https://upload.wikimedia.org/wikipedia/commons/ $9 / 98 /$ White-noise-sound-20sec-mono-44100Hz .
ogg \leftarrow Listen \rightarrow

Example: Brownian Motion

Brownian motion, as shown in the video, is motion with independent random increments, i.e., if $x[n]$ is the position and $v[n]$ is an independent increment, then

$$
x[n]=a x[n-1]+b v[n]
$$

Natural Brownian motion uses $a=b=1$, but if we want a WSS signal, we need to use $b^{2}=1-a^{2}$.

https://commons.wikimedia.org/wiki/File:

Example: Brownian Motion

Suppose we assume $v[n]$ is zero-mean unit-variance white noise, $b^{2}=1-a^{2}$, and $x[n]=a x[n-1]+b v[n]$, so that
$E[x[n] \times[n-1]]=E[(a x[n-1]+b v[n]) \times[n-1]]=a$
$E[x[n] x[n-2]]=E\left[\left(a^{2} x[n-2]+a b v[n-1]+b v[n]\right) x[n-2]\right]=a^{2}$

$$
R_{x x}[m]=a^{|m|}
$$

The power spectrum is

$$
R_{x x}(\omega)=\mathcal{F}\left\{a^{|m|}\right\}=\frac{b^{2}}{\left|1-a e^{-j \omega}\right|^{2}}=\frac{1}{\mathcal{O}\left\{\omega^{2}\right\}}
$$

- Impulse trains and white noise both have flat spectra.

$$
\left|X_{k}\right|^{2}=R_{x x}(\omega)=1
$$

- Square waves and Brownian motion both have Brownian spectra.

$$
\left|X_{k}\right|^{2}=R_{x x}(\omega)=\frac{1}{\mathcal{O}\left\{\omega^{2}\right\}}
$$

https://commons.wikimedia.org/wiki/File: Brown_noise_spectrum.svg

Short-Time Autocorrelation

Autocorrelation isn't a function of n, so it doesn't hurt if we average it over many samples of n :

$$
\begin{aligned}
R_{x x}[m] & =\frac{1}{N} \sum_{n=0}^{N-1} R_{x x}[m]=\frac{1}{N} E\left[\sum_{n=0}^{N-1} x[n] x^{*}[n-m]\right] \\
& =\frac{1}{N} E\left[x[m] * x^{*}[-m]\right]
\end{aligned}
$$

- Convolution: Flip, shift, multiply, and add:

$$
x[m] * h[m]=\sum_{n} x[n] h[m-n]
$$

- Correlation: DON'T flip. Just shift, multiply and add:

$$
x[m] * h^{*}[-m]=\sum_{n} x[n] h^{*}[n-m]
$$

Correlation: Shift, Multiply and Add

CC-SA 3.0, https://commons.wikimedia.org/wiki/File:Comparison_convolution_correlation.svg

Outline

(1) The Vocoder
(2) Random Signals
(3) Power Spectrum

4 Autocorrelation
(5) Spectrum of a Bandpass-Filtered White Noise Signal
(6) Speech Synthesis: Adjusting the Level of Each Band
(C) Conclusions

Facts about convolution

Convolution is commutative:

$$
h[n] * x[n]=x[n] * h[n]
$$

It is also associative:

$$
g[n] *(x[n] * h[n])=(g[n] * x[n]) * h[n]
$$

The Vocoder Block Diagram

TO 9 OTHER SPECTRUM CHANNELS COVERING FREQUENCY RANGE 300-3000~ IN $300 \sim$ STEPS

Fig. 2. Schematic arrangement of the Vocoder.

Spectrum of a Bandpass-Filtered Noise

Suppose

$$
y[n]=h[n] * x[n]
$$

The autocorrelation of $y[n]$ is defined to be
$R_{y y}[m]=E\left[y[n] y^{*}[n-m]\right]$. But remember we can estimate it using the short-time autocorrelation:

$$
\begin{aligned}
R_{y y}[n] & =\frac{1}{N} E\left[y[n] * y^{*}[-n]\right] \\
& =\frac{1}{N} E\left[h[n] * x[n] * h^{*}[-n] * x^{*}[-n]\right] \\
& =\frac{1}{N}\left(h[n] * h^{*}[-n] * E\left[x[n] * x^{*}[-n]\right]\right) \\
& =h[n] * h^{*}[-n] * R_{x x}[n]
\end{aligned}
$$

Spectrum of a Bandpass-Filtered Noise

$$
\begin{gathered}
R_{y y}[n]=h[n] * h^{*}[-n] * R_{x x}[n] \\
R_{y y}(\omega)=|H(\omega)|^{2} R_{x x}(\omega)
\end{gathered}
$$

Unvoiced Speech, Step 2: Bandpass Filter the White Noise

Outline

(1) The Vocoder
(2) Random Signals
(3) Power Spectrum

4 Autocorrelation
(5) Spectrum of a Bandpass-Filtered White Noise Signal
(6) Speech Synthesis: Adjusting the Level of Each Band
(7) Conclusions

The Vocoder Block Diagram

TO 9 OTHER SPECTRUM CHANNELS COVERING FREQUENCY RANGE 300-3000~ IN $300 \sim$ STEPS

Fig. 2. Schematic arrangement of the Vocoder.

Adding Random Signals

Suppose that $x[n]$ and $y[n]$ are two uncorrelated random signals, and we add them together:

$$
z[n]=a x[n]+b y[n]
$$

What are the autocorrelation and power spectrum of $z[n]$?

$$
\begin{aligned}
R_{z z}[m] & =E\left[z[n] z^{*}[n-m]\right] \\
& =E\left[(a x[n]+b y[n])\left(a^{*} x^{*}[n-m]+b^{*} y^{*}[n-m]\right)\right] \\
& =|a|^{2} R_{x x}[m]+|b|^{2} R_{y y}[m],
\end{aligned}
$$

and

$$
R_{z z}(\omega)=|a|^{2} R_{x x}(\omega)+|b|^{2} R_{y y}(\omega)
$$

Real Speech

aveform of a palatal unvoiced fricative, and its power spectr

How to Synthesize a Fricative or a Stop Burst

Start with white noise,

$$
R_{x x}(\omega)=1
$$

Filter by a set of 10 bandpass filters $H_{l}(\omega)$, each about 300 Hz wide, then adjust the amplitude of each one $\left(A_{l}\right)$ to match the amplitude of the speech signal in the same band:

$$
R_{y y}(\omega)=\sum_{l=1}^{10} A_{l} \sum_{k=0}^{N-1}\left|H_{l}(\omega)\right|^{2} R_{x x}(\omega)
$$

Synthetic Speech

Time Domain: White Noise, Synthetic SpeechFrequency Domain: White Noise, Synthetic Sp

\rightarrow Listen \leftarrow

Outline

(1) The Vocoder
(2) Random Signals
(3) Power Spectrum
4) Autocorrelation
(5) Spectrum of a Bandpass-Filtered White Noise Signal
(6) Speech Synthesis: Adjusting the Level of Each Band
(7) Conclusions

Conclusions: How to scale the bands of a power spectrum to make fricatives
(1) White noise has an autocorrelation of $R_{x x}[m]=\delta[m]$, and a power spectrum of $R_{x x}(\omega)=1$.
(2) Convolution:

$$
y[n]=h[n] * x[n] \quad \leftrightarrow \quad R_{y y}[m]=h[m] * h^{*}[-m] * R_{x x}[m]
$$

(3) Linearity:

$$
z[n]=a x[n]+b y[n] \quad \leftrightarrow \quad R_{z z}[n]=|a|^{2} R_{x x}[n]+|b|^{2} R_{y y}[n]
$$

