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The Vocoder Block Diagram
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Vocoder Signals Summary

What is the spectrum of a “relaxation oscillator”?

To answer this question, we need to learn about the
Discrete-Time Fourier Series (DTFS).
What happens when you bandpass filter it?
What happens when you adjust its level?

What is the spectrum of a “random noise”?

To answer this question, we need to learn about
autocorrelation and the power spectrum.
What happens when you bandpass filter it?
What happens when you adjust its level?
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Random Signals

Let’s start out with a zero-mean
random signal, x [n].

Random signal: each x [n] is
a random number.

Zero mean: E [x [n]] = 0 (for
all n).

CC-SA 3.0,
https://commons.wikimedia.org/wiki/File:

White_noise.svg

←Listen→

https://commons.wikimedia.org/wiki/File:White_noise.svg
https://commons.wikimedia.org/wiki/File:White_noise.svg
https://upload.wikimedia.org/wikipedia/commons/9/98/White-noise-sound-20sec-mono-44100Hz.ogg
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Properties a Random Signal Might Have

A random signal is zero-mean if E [x [n]] = 0 for all n.

A random signal is unit-power if E
[
|x [n]|2

]
= 1, regardless

of n.

A random signal is white noise, a.k.a. uncorrelated if
E [x [n]x [m]∗] = 0 for all n 6= m.
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Wide-Sense Stationary Signals

A random signal is called “wide-sense stationary (WSS)” if its
mean, variance, and covariance are independent of n:

E [x [n]] = µx , regardless of n.

E
[
|x [n]− µx |2

]
= σ2x , regardless of n.

The autocorrelation and autocovariance of a WSS signal
are defined to be

Rxx [m] = E [x [n]x∗[n −m]]

Kxx [m] = E [(x [n]− µx) (x [n −m]− µx)∗] ,

regardless of n.
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Example: Zero-Mean, Unit-Variance White Noise

We’ll often use zero-mean,
unit-variance white noise as a
building block:

E [x [n]] = 0

Rxx [m] = δ[m] ={
1 m = 0
0 m 6= 0

Note: if we add one more
assumption (x [n] is Gaussian),
then it’s also true that x [n] are
i.i.d.

CC-SA 3.0,
https://commons.wikimedia.org/wiki/File:

White_noise.svg

←Listen→

https://commons.wikimedia.org/wiki/File:White_noise.svg
https://commons.wikimedia.org/wiki/File:White_noise.svg
https://upload.wikimedia.org/wikipedia/commons/9/98/White-noise-sound-20sec-mono-44100Hz.ogg
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Fourier Transform of a Random Signal is a Random Vector

The Fourier Transform of a
random signal is a random
vector.

X (ω) =
∞∑

n=−∞
x [n]e−jωn

e−jωn is a constant

x [n] is random

X (ω) is the weighted sum of
the random variables x [n]

Spectrogram of pink noise (left)
and white noise (right), shown

with linear frequency axis
(vertical).

CC-SA 3.0, https:
//commons.wikimedia.org/wiki/File:Noise.jpg

https://commons.wikimedia.org/wiki/File:Noise.jpg
https://commons.wikimedia.org/wiki/File:Noise.jpg
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Zero-Mean Random Signal ↔ Zero-Mean Random Vector

The Fourier Transform of a
zero-mean random signal is a
zero-mean random vector.

E [X (ω)] = E

[ ∞∑
n=−∞

x [n]e−jωn

]

=
∞∑

n=−∞
E [x [n]] e−jωn

= 0 CC-SA 3.0,
https://commons.wikimedia.org/wiki/File:

White_noise.svg

https://commons.wikimedia.org/wiki/File:White_noise.svg
https://commons.wikimedia.org/wiki/File:White_noise.svg
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Variance of the Fourier Transform is Interesting

The magnitude-squared Fourier Transform is also a random
variable, but its expected value is not zero.

E
[
|X (ω)|2

]
= E

[( ∞∑
n=−∞

x [n]e−jωn

)( ∞∑
m=−∞

x [m]e−jωm

)∗]

=
∞∑

n=−∞

∞∑
m=−∞

E [x [n]x∗[m]] e−jω(n−m)

=
∞∑

n=−∞

∞∑
m=−∞

Rxx [n −m]e−jω(n−m)

Spectrogram of pink noise (left) and white noise (right), shown with linear frequency axis (vertical).

CC-SA 3.0, https://commons.wikimedia.org/wiki/File:Noise.jpg

https://commons.wikimedia.org/wiki/File:Noise.jpg
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Power Spectrum = Time-Normalized Expected Value of
the Variance of the Fourier Transform

For most signals, the formula on the previous slide gives

E
[
|X (ω)|2

]
→∞. To make it easier to work with, Norbert

Wiener defined the power spectrum to be the time-normalized
expected value of the magnitude squared Fourier transform:

Rxx(ω) = lim
N→∞

1

N
E


∣∣∣∣∣∣∣

(N−1
2 )∑

n=−(N−1
2 )

x [n]e−jωn

∣∣∣∣∣∣∣
2
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Short-Time Power Spectrum

Most practical signals are not infinite length. Instead, we usually
want to just compute the Fourier transform over N samples, say,
0 ≤ n ≤ N − 1. In this case we can define the short-time power
spectrum to be

Rxx(ω) =
1

N
E

∣∣∣∣∣
N−1∑
n=0

x [n]e−jωn

∣∣∣∣∣
2
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Example: Power Spectrum of White Noise

For example, consider white noise: E [x [n]x [m]] = 0 unless n = m.
In this case,

Rxx(ω) =
1

N
E
[
|X (ω)|2

]
=

1

N

N−1∑
n=0

N−1∑
m=0

E [x [n]x∗[m]] e−jω(n−m)

=
1

N

N−1∑
n=0

E
[
|x [n]|2

]
= E

[
|x [n]|2

]
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Example: Power Spectrum of White Noise

For example, consider white noise: E [x [n]x [m]] = 0 unless n = m.
In this case,

Rxx(ω) = E
[
|x [n]|2

]
This is why we call it white noise: its power spectrum is a
constant, Rxx(ω) = E

[
|x [n]|2

]
, at every frequency. For example,

for zero-mean unit-variance white noise,
Rxx(ω) = E

[
|x [n]|2

]
= σ2x = 1.

Spectrogram of pink noise (left) and white noise (right), shown with linear frequency axis (vertical).

CC-SA 3.0, https://commons.wikimedia.org/wiki/File:Noise.jpg

https://commons.wikimedia.org/wiki/File:Noise.jpg
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Power Spectrum of a WSS Signal

Remember that WSS signals have an autocorrelation function that
doesn’t depend on n:

Rxx [m] = E [x [n]x∗[n −m]]

For a WSS signal, it’s possible to use a dramatic shortcut to
compute the power spectrum:

Rxx(ω) =
1

N
E

∣∣∣∣∣∑
n

x [n]e−jωn

∣∣∣∣∣
2


=
1

N
E

[(∑
n

x [n]e−jωn

)(∑
n−m

x [n −m]e−jω(n−m)

)∗]

=
1

N

∑
n

∑
m

E [x [n]x∗[n −m]] e−jωm

=
∑
m

Rxx [m]e−jωm
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Power Spectrum of a WSS Signal

Let me just repeat that, since it’s the most important formula
today.

Rxx(ω) =
∑
m

Rxx [m]e−jωm
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Example: Zero-Mean, Unit-Variance White Noise

For example, consider white
noise:

Rxx [m] = δ[m] =

{
1 m = 0
0 m 6= 0

So its power spectrum is

Rxx(ω) = F {δ[m]} = 1 CC-SA 3.0,
https://commons.wikimedia.org/wiki/File:

White_noise.svg

https://upload.wikimedia.org/wikipedia/commons/

9/98/White-noise-sound-20sec-mono-44100Hz.

ogg←Listen→

https://commons.wikimedia.org/wiki/File:White_noise.svg
https://commons.wikimedia.org/wiki/File:White_noise.svg
https://upload.wikimedia.org/wikipedia/commons/9/98/White-noise-sound-20sec-mono-44100Hz.ogg
https://upload.wikimedia.org/wikipedia/commons/9/98/White-noise-sound-20sec-mono-44100Hz.ogg
https://upload.wikimedia.org/wikipedia/commons/9/98/White-noise-sound-20sec-mono-44100Hz.ogg
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Example: Brownian Motion

Brownian motion, as shown in
the video, is motion with
independent random increments,
i.e., if x [n] is the position and
v [n] is an independent increment,
then

x [n] = ax [n − 1] + bv [n]

Natural Brownian motion uses
a = b = 1, but if we want a WSS
signal, we need to use
b2 = 1− a2.

CC-SA 3.0,

https://commons.wikimedia.org/wiki/File:

Brownianmotion5particles150frame.gif

https://commons.wikimedia.org/wiki/File:Brownianmotion5particles150frame.gif
https://commons.wikimedia.org/wiki/File:Brownianmotion5particles150frame.gif
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Example: Brownian Motion

Suppose we assume v [n] is zero-mean unit-variance white noise,
b2 = 1− a2, and x [n] = ax [n − 1] + bv [n], so that

E [x [n]x [n − 1]] = E [(ax [n − 1] + bv [n]) x [n − 1]] = a

E [x [n]x [n − 2]] = E
[(
a2x [n − 2] + abv [n − 1] + bv [n]

)
x [n − 2]

]
= a2

...

Rxx [m] = a|m|

The power spectrum is

Rxx(ω) = F
{
a|m|

}
=

b2

|1− ae−jω|2
=

1

O{ω2}
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Impulse trains and white
noise both have flat spectra.

|Xk |2 = Rxx(ω) = 1

Square waves and Brownian
motion both have Brownian
spectra.

|Xk |2 = Rxx(ω) =
1

O{ω2}
CC-SA 3.0,

https://commons.wikimedia.org/wiki/File:

Brown_noise_spectrum.svg

https://commons.wikimedia.org/wiki/File:Brown_noise_spectrum.svg
https://commons.wikimedia.org/wiki/File:Brown_noise_spectrum.svg
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Short-Time Autocorrelation

Autocorrelation isn’t a function of n, so it doesn’t hurt if we
average it over many samples of n:

Rxx [m] =
1

N

N−1∑
n=0

Rxx [m] =
1

N
E

[
N−1∑
n=0

x [n]x∗[n −m]

]

=
1

N
E [x [m] ∗ x∗[−m]]

Convolution: Flip, shift, multiply, and add:

x [m] ∗ h[m] =
∑
n

x [n]h[m − n]

Correlation: DON’T flip. Just shift, multiply and add:

x [m] ∗ h∗[−m] =
∑
n

x [n]h∗[n −m]
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Correlation: Shift, Multiply and Add

CC-SA 3.0, https://commons.wikimedia.org/wiki/File:Comparison_convolution_correlation.svg

https://commons.wikimedia.org/wiki/File:Comparison_convolution_correlation.svg
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Facts about convolution

Convolution is commutative:

h[n] ∗ x [n] = x [n] ∗ h[n]

It is also associative:

g [n] ∗ (x [n] ∗ h[n]) = (g [n] ∗ x [n]) ∗ h[n]
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The Vocoder Block Diagram
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Spectrum of a Bandpass-Filtered Noise

Suppose
y [n] = h[n] ∗ x [n]

The autocorrelation of y [n] is defined to be
Ryy [m] = E [y [n]y∗[n −m]]. But remember we can estimate it
using the short-time autocorrelation:

Ryy [n] =
1

N
E [y [n] ∗ y∗[−n]]

=
1

N
E [h[n] ∗ x [n] ∗ h∗[−n] ∗ x∗[−n]]

=
1

N
(h[n] ∗ h∗[−n] ∗ E [x [n] ∗ x∗[−n]])

= h[n] ∗ h∗[−n] ∗ Rxx [n]
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Spectrum of a Bandpass-Filtered Noise

Ryy [n] = h[n] ∗ h∗[−n] ∗ Rxx [n]

Ryy (ω) = |H(ω)|2 Rxx(ω)
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Unvoiced Speech, Step 2: Bandpass Filter the White Noise
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The Vocoder Block Diagram
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Adding Random Signals

Suppose that x [n] and y [n] are two uncorrelated random signals,
and we add them together:

z [n] = ax [n] + by [n]

What are the autocorrelation and power spectrum of z [n]?

Rzz [m] = E [z [n]z∗[n −m]]

= E [(ax [n] + by [n]) (a∗x∗[n −m] + b∗y∗[n −m])]

= |a|2Rxx [m] + |b|2Ryy [m],

and
Rzz(ω) = |a|2Rxx(ω) + |b|2Ryy (ω)
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Real Speech

→Listen←

https://courses.engr.illinois.edu/ece537/fa2022/slides/shh.wav
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How to Synthesize a Fricative or a Stop Burst

Start with white noise,
Rxx(ω) = 1

Filter by a set of 10 bandpass filters Hl(ω), each about 300Hz
wide, then adjust the amplitude of each one (Al) to match the
amplitude of the speech signal in the same band:

Ryy (ω) =
10∑
l=1

Al

N−1∑
k=0

|Hl(ω)|2 Rxx(ω)



Vocoder Random Signals Power Spectrum Autocorrelation Bandpass Synthesis Conclusions

Synthetic Speech

→Listen←

https://courses.engr.illinois.edu/ece537/fa2022/slides/synthetic_shh.wav
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Conclusions: How to scale the bands of a power spectrum
to make fricatives

1 White noise has an autocorrelation of Rxx [m] = δ[m], and a
power spectrum of Rxx(ω) = 1.

2 Convolution:

y [n] = h[n] ∗ x [n] ↔ Ryy [m] = h[m] ∗ h∗[−m] ∗ Rxx [m]

3 Linearity:

z [n] = ax [n] + by [n] ↔ Rzz [n] = |a|2Rxx [n] + |b|2Ryy [n]
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