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First Speech Synthesis: The Voder, 1939

Flickr Commons, https://commons.wikimedia.org/wiki/File:VODER_demonstrated_on_1939_New_York_
World_Fair_-_The_VODER_fascinates_the_crowds_-_Bell_Telephone_Quarterly_(January_1940).jpg

→Watch Video←

https://commons.wikimedia.org/wiki/File:VODER_demonstrated_on_1939_New_York_World_Fair_-_The_VODER_fascinates_the_crowds_-_Bell_Telephone_Quarterly_(January_1940).jpg
https://commons.wikimedia.org/wiki/File:VODER_demonstrated_on_1939_New_York_World_Fair_-_The_VODER_fascinates_the_crowds_-_Bell_Telephone_Quarterly_(January_1940).jpg
https://www.youtube.com/watch?v=5hyI_dM5cGo&t=28s
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First Speech Coder: The Vocoder, 1940
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What background do you need in order to understand the
vocoder?

What is the spectrum of a “relaxation oscillator”?

To answer this question, we need to learn about the
Discrete-Time Fourier Series (DTFS).
What happens when you bandpass filter it?
What happens when you adjust its level?

What is the spectrum of a “random noise”?

To answer this question, we need to learn about
autocorrelation and the power spectrum.
What happens when you bandpass filter it?
What happens when you adjust its level?
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Recommended Textbooks

For this article, Licklider’s article, and Atal’s article, you’ll find any
of these four textbooks extremely useful. I learned from the 1978
text; these days I mostly refer to the 2010 text; the 2002 text has
a little additional material that is missing in the others, but
nothing critical for this course:

Thomas F. Quatieri, Discrete-Time Speech Signal Processing,
2002

Lawrence R. Rabiner & Ronald W. Schafer,

Digital Processing of Speech Signals, 1978
An Introduction to Digital Speech Processing, 2007
Theory and Applications of Digital Speech Processing, 2010
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Voiced Speech, Step 1: Relaxation Oscillator
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What is a “Relaxation Oscillator”?

A relaxation oscillator generates a square wave by switching the
output voltage every time the internal capacitor voltage exceeds
half the output (e.g.: for automobile turn signals).

CC-SA 3.0, https://commons.wikimedia.org/wiki/File:Opamprelaxationoscillator.svg

https://commons.wikimedia.org/wiki/File:Opamprelaxationoscillator.svg
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Spectral Analysis: Transforms You Know

Continuous Time,
Infinite Frequency

Discrete Time, Pe-
riodic Frequency

Periodic Time, Dis-
crete Frequency

Continuous Time
Fourier Series
(CTFS)

Discrete Fourier
Transform (DFT),
a.k.a. Discrete-
Time Fourier Series
(DTFS)

Infinite Time, Con-
tinuous Frequency

Continuous-Time
Fourier Transform
(CTFT)

Discrete-Time
Fourier Transform
(DTFT)
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Discrete-Time Fourier Series

Suppose a signal, x [n], is periodic, with period N, then it can be
written:

x [n] =
N−1∑
k=0

Xke
j 2πkn

N ,

where the coefficients are

Xk =
1

N

N−1∑
n=0

x [n]e−j
2πkn
N
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Example: Impulse Train

For example, suppose x [n] is the
discrete-time impulse train

x [n] =
∞∑

m=−∞
δ[n −mN]
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Example: Impulse Train

Fourier Series formulas say we
can write x [n] as

x [n] =
N−1∑
k=0

Xke
j 2πkn

N ,

where the coefficients are

Xk =
1

N

N−1∑
n=0

x [n]e−j
2πkn
N
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Example: Impulse Train

Xk =
1

N

N−1∑
n=0

x [n]e−j
2πkn
N

=
1

N

(
x [0] +

N−1∑
n=1

x [n]e−j
2πkn
N

)

=
1

N
(1 + 0)

=
1

N
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Properties of the Discrete-Time Fourier Series

Linearity

DTFT

Convolution

Parseval’s Theorem
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Linearity

If x [n] and y [n] have the same period,

x [n] =
N−1∑
k=0

Xke
j 2πkn

N

y [n] =
N−1∑
k=0

Yke
j 2πkn

N ,

then for any real or complex constants a and b,

z [n] = ax [n] + by [n] ↔ Zk = aXk + bYk
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DTFT

If a signal has a Fourier series,

x [n] =
N−1∑
k=0

Xke
j 2πkn

N ,

then its discrete-time Fourier transform (DTFT) is given by

X (ω) = 2π
N−1∑
k=0

Xkδ

(
ω − 2πk

N

)
where δ(ω) is the Dirac delta.
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Convolution

Suppose x [n] is periodic with N,

x [n] =
N−1∑
k=0

Xke
j 2πkn

N ,

and
y [n] = h[n] ∗ x [n].

Then yn] is also periodic with N, and

Yk = XkH

(
2πk

N

)
,

where H(ω) is the DTFT of h[n].
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Convolution Example: Square Wave

For example, suppose we want
the Fourier series of an
even-symmetric square wave with
period N:

y [n] =


1 |n −mN| ≤ L−1

2
∀ integer m

−1 otherwise CC-SA 3.0,
https://commons.wikimedia.org/wiki/File:

Opamprelaxationoscillator.svg

https://commons.wikimedia.org/wiki/File:Opamprelaxationoscillator.svg
https://commons.wikimedia.org/wiki/File:Opamprelaxationoscillator.svg
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Convolution Example: Square Wave

We can find its Fourier Series by
realizing that

y [n] = −1 + 2x [n] ∗ h[n],

where x [n] is an impulse train,
and h[n] is a rectangle:

h[n] =

{
1 −L−1

2 ≤ n ≤ L−1
2

0 otherwise

CC-SA 3.0,
https://commons.wikimedia.org/wiki/File:

Opamprelaxationoscillator.svg

https://commons.wikimedia.org/wiki/File:Opamprelaxationoscillator.svg
https://commons.wikimedia.org/wiki/File:Opamprelaxationoscillator.svg
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Convolution Example: Square Wave

We can find its Fourier Series by
realizing that (except for the
constant offset term, Y0),

Yk = 2H

(
2πk

N

)
Xk

where Xk = 1
N (because it’s an

impulse train!), and

H(ω) = DTFT {rectangle}

=
sin(ωL/2)

sin(ω/2)

CC-SA 3.0,
https://commons.wikimedia.org/wiki/File:

Opamprelaxationoscillator.svg

https://commons.wikimedia.org/wiki/File:Opamprelaxationoscillator.svg
https://commons.wikimedia.org/wiki/File:Opamprelaxationoscillator.svg
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Convolution Example: Square Wave

Plugging in ω = 2πk
N , we get

that, for k 6= 0,

Yk = 2
sin(πkL/N)

N sin(πk/N)

This is called a 1/f 2 spectrum,
a.k.a. https://en.wikipedia.

org/wiki/Brownian_noise,
because

|Yk |2 =


0 kL = integer

multiple of N

1
O{k2} otherwise

CC-SA 3.0,
https://commons.wikimedia.org/wiki/File:

Opamprelaxationoscillator.svg

https://en.wikipedia.org/wiki/Brownian_noise
https://en.wikipedia.org/wiki/Brownian_noise
https://commons.wikimedia.org/wiki/File:Opamprelaxationoscillator.svg
https://commons.wikimedia.org/wiki/File:Opamprelaxationoscillator.svg
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Parseval’s Theorem

. . . and speaking of |Yk |2. . .
Parseval’s theorem says that power in the time domain equals
power in the frequency domain:

1

N

N−1∑
n=0

|y [n]|2 =
N−1∑
k=0

|Yk |2

This is especially useful after filtering. If y [n] = h[n] ∗ x [n], it
might be difficult to calculate power in the time domain, but in the
frequency domain, you just use Yk = H

(
2πk
N

)
Xk , square, and add.
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Voiced Speech, Step 2: Bandpass Filter the Buzz
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Filtering a Periodic Signal

Suppose x [n] is periodic:

x [n] =
N−1∑
k=0

Xke
j 2πkn

N ,

and we bandpass filter it with a filter h[n]:

y [n] = h[n] ∗ x [n],

then y [n] is periodic with Fourier series coefficients given by:

Yk = H

(
2πk

N

)
Xk
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Bandpass Filtering a Periodic Signal

In particular, suppose that H(ω) is an ideal bandpass filter with
center frequency α and bandwidth β:

H(ω) =

{
1 α− β

2 ≤ |ω − 2πm| < α + β
2 , ∀integer m

0 otherwise

Then Yk is just a selection of a few of the harmonics of Xk :

Yk =

{
Xk α− β

2 ≤
∣∣2πk

N − 2πm
∣∣ < α + β

2 , ∀integer m
0 otherwise
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Voiced Speech, Step 2: Bandpass Filter the Buzz
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Real Speech

→Listen←

https://en.wikipedia.org/wiki/File:Open_back_unrounded_vowel.ogg
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How to Synthesize a Vowel

Start with an impulse train (Dudley used a relaxation oscillator =
square wave, but an impulse train is better because it has a flat
spectrum):

Xk = 1

Filter by a set of 10 bandpass filters Hl(ω), each about 300Hz
wide, then adjust the amplitude of each one (Al) to match the
amplitude of the speech signal in the same band:

y [n] =
10∑
l=1

Al

N−1∑
k=0

Hl

(
2πk

N

)
Xk
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Synthetic Speech

→Listen← Spectrum is about right. Pitch is too monotone.
Time-domain h[n] should be causal to better represent speech.

https://courses.engr.illinois.edu/ece537/fa2022/slides/synthetic_vowel.wav
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Conclusions: Attributes of DTFS that made Vocoder
Possible

1 The Fourier Series of an impulse train is Xk = 1

2 Convolution:

y [n] = h[n] ∗ x [n] ↔ Yk = H

(
2πk

N

)
Xk

3 Linearity:

Zk = aXk + bYk ↔ z [n] = ax [n] + by [n]

4 . . . and one more that will help on the homework: Parseval’s
theorem.

1

N

N−1∑
n=0

|x [n]|2 =
N−1∑
k=0

|Xk |2
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