Vocoder	DTFS	Properties	Bandpass	Synthesis	Conclusions

Lecture 4: The Vocoder

Mark Hasegawa-Johnson

ECE 537: Speech Processing Fundamentals

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Vocoder	DTFS	Properties	Bandpass	Synthesis	Conclusions

- 2 Discrete-Time Fourier Series
- OPPOPERTIES OF THE DTFS
- 4 Spectrum of a Bandpass-Filtered Periodic Signal
- 5 Speech Synthesis: Adjusting the Level of Each Band

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

6 Conclusions

Vocoder	DTFS	Properties	Bandpass	Synthesis	Conclusions
●○○○○	00000000	000000000	00000	0000	00
Outline					

- 2 Discrete-Time Fourier Series
- Properties of the DTFS
- 4 Spectrum of a Bandpass-Filtered Periodic Signal
- 5 Speech Synthesis: Adjusting the Level of Each Band

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

6 Conclusions

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

FIG. 2. Schematic arrangement of the Vocoder.

 Vocoder cool
 DTFS cool
 Properties cool
 Bandpass cool
 Synthesis cool
 Conclusions cool

 What background do you need in order to understand the vocoder?
 vocoder
 Vocoder</td

- What is the spectrum of a "relaxation oscillator"?
 - To answer this question, we need to learn about the Discrete-Time Fourier Series (DTFS).
 - What happens when you bandpass filter it?
 - What happens when you adjust its level?
- What is the spectrum of a "random noise"?
 - To answer this question, we need to learn about autocorrelation and the power spectrum.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- What happens when you bandpass filter it?
- What happens when you adjust its level?

For this article, Licklider's article, and Atal's article, you'll find any of these four textbooks extremely useful. I learned from the 1978 text; these days I mostly refer to the 2010 text; the 2002 text has a little additional material that is missing in the others, but nothing critical for this course:

- Thomas F. Quatieri, *Discrete-Time Speech Signal Processing*, 2002
- Lawrence R. Rabiner & Ronald W. Schafer,
 - Digital Processing of Speech Signals, 1978
 - An Introduction to Digital Speech Processing, 2007
 - Theory and Applications of Digital Speech Processing, 2010

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Vocoder	DTFS	Properties	Bandpass	Synthesis	Conclusions
00000	••••••	0000000000	00000	0000	
Outline					

The Vocoder

- 2 Discrete-Time Fourier Series
- OPPOPERTIES OF THE DTFS
- 4 Spectrum of a Bandpass-Filtered Periodic Signal
- 5 Speech Synthesis: Adjusting the Level of Each Band

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

6 Conclusions

TO 9 OTHER SPECTRUM CHANNELS COVERING FREQUENCY RANGE 300-30000 IN 300 0 STEPS

FIG. 2. Schematic arrangement of the Vocoder.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

A relaxation oscillator generates a square wave by switching the output voltage every time the internal capacitor voltage exceeds half the output (e.g.: for automobile turn signals).

CC-SA 3.0, https://commons.wikimedia.org/wiki/File:Opamprelaxationoscillator.svg

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Spectral	Analysis:	Transforms `	You Know		
Vocoder	DTFS	Properties	Bandpass	Synthesis	Conclusions
00000	0000000	000000000	00000	0000	00

	Continuous Time Infinite Frequency	Discrete Time, Pe- riodic Frequency
Periodic Time, Dis- crete Frequency	Continuous Time Fourier Series (CTFS)	Discrete Fourier Transform (DFT), a.k.a. Discrete- Time Fourier Series (DTFS)
Infinite Time, Con- tinuous Frequency	Continuous-Time Fourier Transform (CTFT)	Discrete-Time Fourier Transform (DTFT)

 Vocoder
 DTFS
 Properties
 Bandpass
 Synthesis
 Conclusions

 Discrete-Time Fourier Series

Suppose a signal, x[n], is periodic, with period N, then it can be written:

$$x[n] = \sum_{k=0}^{N-1} X_k e^{j\frac{2\pi kn}{N}},$$

where the coefficients are

$$X_{k} = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi kn}{N}}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

 Vocoder
 DTFS
 Properties
 Bandpass
 Synthesis
 Conclusions

 Example:
 Impulse Train

For example, suppose x[n] is the discrete-time impulse train

$$x[n] = \sum_{m=-\infty}^{\infty} \delta[n - mN]$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

 Vocoder
 DTFS
 Properties
 Bandpass
 Synthesis
 Conclusions

 Example:
 Impulse Train

Fourier Series formulas say we can write x[n] as

$$x[n] = \sum_{k=0}^{N-1} X_k e^{j\frac{2\pi kn}{N}},$$

where the coefficients are

$$X_{k} = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi kn}{N}}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Vocoder	DTFS	Properties	Bandpass	Synthesis	Conclusions
00000	0000000	000000000	00000	0000	
Example:	Impulse T	rain			

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

$$X_{k} = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi kn}{N}}$$
$$= \frac{1}{N} \left(x[0] + \sum_{n=1}^{N-1} x[n] e^{-j\frac{2\pi kn}{N}} \right)$$
$$= \frac{1}{N} (1+0)$$
$$= \frac{1}{N}$$

Vocoder	DTFS	Properties	Bandpass	Synthesis	Conclusions
00000	00000000	●○○○○○○○○	00000	0000	
Outline					

The Vocoder

- 2 Discrete-Time Fourier Series
- Operation of the DTFS
- 4 Spectrum of a Bandpass-Filtered Periodic Signal
- 5 Speech Synthesis: Adjusting the Level of Each Band

6 Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Linearity
- DTFT
- Convolution
- Parseval's Theorem

Vocoder	DTFS	Properties	Bandpass	Synthesis	Conclusions
00000	00000000	○o●ooooooo	00000	0000	
Linearity					

If x[n] and y[n] have the same period,

$$x[n] = \sum_{k=0}^{N-1} X_k e^{j\frac{2\pi kn}{N}}$$
$$y[n] = \sum_{k=0}^{N-1} Y_k e^{j\frac{2\pi kn}{N}},$$

then for any real or complex constants a and b,

$$z[n] = ax[n] + by[n] \quad \leftrightarrow \quad Z_k = aX_k + bY_k$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

If a signal has a Fourier series,

$$x[n] = \sum_{k=0}^{N-1} X_k e^{j\frac{2\pi kn}{N}},$$

then its discrete-time Fourier transform (DTFT) is given by

$$X(\omega) = 2\pi \sum_{k=0}^{N-1} X_k \delta\left(\omega - \frac{2\pi k}{N}\right)$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

where $\delta(\omega)$ is the Dirac delta.

Vocoder	DTFS	Properties	Bandpass	Synthesis	Conclusions
00000	00000000	000000000	00000	0000	00
Convolut	ion				

Suppose x[n] is periodic with N,

$$x[n] = \sum_{k=0}^{N-1} X_k e^{j\frac{2\pi kn}{N}},$$

and

$$y[n] = h[n] * x[n].$$

Then yn] is also periodic with N, and

$$Y_k = X_k H\left(\frac{2\pi k}{N}\right),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where $H(\omega)$ is the DTFT of h[n].

 Vocoder
 DTFS
 Properties
 Bandpass
 Synthesis
 Conclusions

 Convolution Example:
 Square
 Wave
 Value
 Value

For example, suppose we want the Fourier series of an even-symmetric square wave with period *N*:

$$y[n] = \left\{ egin{array}{ccc} 1 & |n-mN| \leq rac{L-1}{2} \ & orall \ & ext{integer} \ m \ -1 & ext{otherwise} \end{array}
ight.$$

https://commons.wikimedia.org/wiki/File: Opamprelaxationoscillator.svg

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 Vocoder
 DTFS
 Properties
 Bandpass
 Synthesis
 Conclusions

 Convolution Example:
 Square
 Wave
 Value
 Value

We can find its Fourier Series by realizing that

y[n] = -1 + 2x[n] * h[n],

where x[n] is an impulse train, and h[n] is a rectangle:

$$h[n] = \begin{cases} 1 & -\frac{L-1}{2} \le n \le \frac{L-1}{2} \\ 0 & \text{otherwise} \end{cases}$$

CC-SA 3.0, https://commons.wikimedia.org/wiki/File: Opamprelaxationoscillator.svg

(日) (四) (日) (日) (日)

 Vocoder
 DTFS
 Properties
 Bandpass
 Synthesis
 Conclusions

 Convolution Example:
 Square
 Wave
 Value
 Value

We can find its Fourier Series by realizing that (except for the constant offset term, Y_0),

$$Y_k = 2H\left(\frac{2\pi k}{N}\right)X_k$$

where $X_k = \frac{1}{N}$ (because it's an impulse train!), and

$$H(\omega) = \mathsf{DTFT} \{\mathsf{rectangle}\}$$
$$= \frac{\sin(\omega L/2)}{\sin(\omega/2)}$$

CC-SA 3.0, https://commons.wikimedia.org/wiki/File: Opamprelaxationoscillator.svg

Vocoder DTFS Properties Bandpass Synthesis Conclusions ocoo

Convolution Example: Square Wave

Plugging in
$$\omega = \frac{2\pi k}{N}$$
, we get that, for $k \neq 0$,

$$Y_k = 2 \frac{\sin(\pi k L/N)}{N \sin(\pi k/N)}$$

This is called a $1/f^2$ spectrum, a.k.a. https://en.wikipedia. org/wiki/Brownian_noise, because

$$|Y_k|^2 = \begin{cases} 0 & kL = \text{integer} \\ & \text{multiple of } N \\ \\ \frac{1}{\mathcal{O}\{k^2\}} & \text{otherwise} \end{cases}$$

CC-SA 3.0, https://commons.wikimedia.org/wiki/File: Opamprelaxationoscillator.svg

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

Vocoder	DTFS	Properties	Bandpass	Synthesis	Conclusions
00000	00000000	○○○○○○○○●	00000	0000	00
Parseval'	s Theorem				

... and speaking of $|Y_k|^2$...

Parseval's theorem says that power in the time domain equals power in the frequency domain:

$$\frac{1}{N}\sum_{n=0}^{N-1}|y[n]|^2 = \sum_{k=0}^{N-1}|Y_k|^2$$

This is especially useful after filtering. If y[n] = h[n] * x[n], it might be difficult to calculate power in the time domain, but in the frequency domain, you just use $Y_k = H\left(\frac{2\pi k}{N}\right) X_k$, square, and add.

Vocoder	DTFS	Properties	Bandpass	Synthesis	Conclusions
00000	00000000	0000000000	•••••	0000	
Outline					

The Vocoder

- 2 Discrete-Time Fourier Series
- Operation of the DTFS

4 Spectrum of a Bandpass-Filtered Periodic Signal

5 Speech Synthesis: Adjusting the Level of Each Band

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

6 Conclusions

TO 9 OTHER SPECTRUM CHANNELS COVERING FREQUENCY RANGE 300-30000 IN 300 0 STEPS

FIG. 2. Schematic arrangement of the Vocoder.

Vocoder	DTFS	Properties	Bandpass	Synthesis	Conclusions		
00000	00000000	0000000000	○○●○○	0000			
Filtering a Periodic Signal							

Suppose *x*[*n*] is periodic:

$$x[n] = \sum_{k=0}^{N-1} X_k e^{j\frac{2\pi kn}{N}},$$

and we bandpass filter it with a filter h[n]:

$$y[n] = h[n] * x[n],$$

then y[n] is periodic with Fourier series coefficients given by:

$$Y_k = H\left(\frac{2\pi k}{N}\right) X_k$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Vocoder DTFS Properties Bandpass Synthesis Conclusions Bandpass Filtering a Periodic Signal Properties Properties</

In particular, suppose that $H(\omega)$ is an ideal bandpass filter with center frequency α and bandwidth β :

$$H(\omega) = \begin{cases} 1 & \alpha - \frac{\beta}{2} \le |\omega - 2\pi m| < \alpha + \frac{\beta}{2}, & \forall \text{integer } m \\ 0 & \text{otherwise} \end{cases}$$

Then Y_k is just a selection of a few of the harmonics of X_k :

$$Y_k = \begin{cases} X_k & \alpha - \frac{\beta}{2} \le \left|\frac{2\pi k}{N} - 2\pi m\right| < \alpha + \frac{\beta}{2}, \quad \forall \text{integer } m \\ 0 & \text{otherwise} \end{cases}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Vocoder 00000	DTFS 00000000	Properties 0000000000	Bandpass 00000	Synthesis	Conclusions
Outline					

- The Vocoder
- 2 Discrete-Time Fourier Series
- Operation of the DTFS
- 4 Spectrum of a Bandpass-Filtered Periodic Signal
- 5 Speech Synthesis: Adjusting the Level of Each Band

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

6 Conclusions

Vocoder	DTFS	Properties	Bandpass	Synthesis	Conclusions	
00000	00000000	000000000	00000	○●○○	00	
Real Speech						

999

æ

Start with an impulse train (Dudley used a relaxation oscillator = square wave, but an impulse train is better because it has a flat spectrum):

$$X_k = 1$$

Filter by a set of 10 bandpass filters $H_I(\omega)$, each about 300Hz wide, then adjust the amplitude of each one (A_I) to match the amplitude of the speech signal in the same band:

$$y[n] = \sum_{l=1}^{10} A_l \sum_{k=0}^{N-1} H_l \left(\frac{2\pi k}{N}\right) X_k$$

Vocoder	DTFS	Properties	Bandpass	Synthesis	Conclusions		
00000	00000000	0000000000	00000	○○○●	00		
Synthetic Speech							

 \rightarrow Listen \leftarrow Spectrum is about right. Pitch is too monotone. Time-domain h[n] should be causal to better represent speech.

Vocoder	DTFS	Properties	Bandpass	Synthesis	Conclusions
00000	00000000	0000000000	00000	0000	●○
Outline					

The Vocoder

- 2 Discrete-Time Fourier Series
- Properties of the DTFS
- 4 Spectrum of a Bandpass-Filtered Periodic Signal
- 5 Speech Synthesis: Adjusting the Level of Each Band

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

6 Conclusions

Vocoder DTFS Properties Bandpass Synthesis Conclusions Conclusions: Attributes of DTFS that made Vocoder Possible

- **(**) The Fourier Series of an impulse train is $X_k = 1$
- Onvolution:

$$y[n] = h[n] * x[n] \quad \leftrightarrow \quad Y_k = H\left(\frac{2\pi k}{N}\right) X_k$$

Inearity:

$$Z_k = aX_k + bY_k \quad \leftrightarrow \quad z[n] = ax[n] + by[n]$$

... and one more that will help on the homework: Parseval's theorem.

$$\frac{1}{N}\sum_{n=0}^{N-1}|x[n]|^2=\sum_{k=0}^{N-1}|X_k|^2$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @