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First Speech Synthesis: The Voder, 1939
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Flickr Commons, https://commons.wikimedia.org/wiki/File:VODER_demonstrated_on_1939_New_York_

World_Fair_-_The_VODER_fascinates_the_crowds_-_Bell_Telephone_Quarterly_(January_1940).jpg
—Watch Video<—


https://commons.wikimedia.org/wiki/File:VODER_demonstrated_on_1939_New_York_World_Fair_-_The_VODER_fascinates_the_crowds_-_Bell_Telephone_Quarterly_(January_1940).jpg
https://commons.wikimedia.org/wiki/File:VODER_demonstrated_on_1939_New_York_World_Fair_-_The_VODER_fascinates_the_crowds_-_Bell_Telephone_Quarterly_(January_1940).jpg
https://www.youtube.com/watch?v=5hyI_dM5cGo&t=28s
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First Speech Coder: The Vocoder, 1940
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What background do you need in order to understand the

vocoder?

@ What is the spectrum of a “relaxation oscillator”?

e To answer this question, we need to learn about the
Discrete-Time Fourier Series (DTFS).

e What happens when you bandpass filter it?

e What happens when you adjust its level?

@ What is the spectrum of a “random noise”?

e To answer this question, we need to learn about
autocorrelation and the power spectrum.

o What happens when you bandpass filter it?

e What happens when you adjust its level?
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Recommended Textbooks

For this article, Licklider's article, and Atal’s article, you'll find any
of these four textbooks extremely useful. | learned from the 1978
text; these days | mostly refer to the 2010 text; the 2002 text has
a little additional material that is missing in the others, but
nothing critical for this course:

@ Thomas F. Quatieri, Discrete-Time Speech Signal Processing,

2002
@ Lawrence R. Rabiner & Ronald W. Schafer,

o Digital Processing of Speech Signals, 1978
e An Introduction to Digital Speech Processing, 2007
e Theory and Applications of Digital Speech Processing, 2010
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Voiced Speech, Step 1: Relaxation Oscillator
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What is a “Relaxation Oscillator” ?

A relaxation oscillator generates a square wave by switching the
output voltage every time the internal capacitor voltage exceeds
half the output (e.g.: for automobile turn signals).

1. o ’7
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0,57
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CC-SA 3.0, https://commons.wikimedia.org/wiki/File:Opamprelaxationoscillator.svg


https://commons.wikimedia.org/wiki/File:Opamprelaxationoscillator.svg
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Spectral Analysis: Transforms You Know

Continuous Time,
Infinite Frequency

Discrete Time, Pe-
riodic Frequency

Periodic Time, Dis- || Continuous  Time | Discrete Fourier
crete Frequency Fourier Series | Transform (DFT),
(CTFS) a.k.a. Discrete-
Time Fourier Series
(DTFS)
Infinite Time, Con- || Continuous-Time Discrete-Time
tinuous Frequency Fourier Transform | Fourier Transform
(CTFT) (DTFT)
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Discrete-Time Fourier Series

Suppose a signal, x[n], is periodic, with period N, then it can be
written:

N—1
:2mwkn
X[l =" X W,
k=0
where the coefficients are

2mkn

] V-1 '
Xk = N ZO x[nle™/ N
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Example: Impulse Train

Discrete-Time Impulse Train w/Period N=10

. 1.0 4
For example, suppose x[n] is the
discrete-time impulse train **
0.6 4
0 = 0.4
x[n] = Z d[n — mN] ol
m=—00
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Example: Impulse Train

Fourier Series formulas say we
can Write X[n] as Discrete-Time Impulse Train w/Period N=10

2mkn 0.8

N-1
x[n] = Z Xeel N,
k=0

0.6

x[n)

0.4

where the coefficients are

0.2

0.0

2mwkn

N-1
1 § —J : , . , ‘
Xk = — x[n]e N 0 20 ) 60 80 100
N
n=0
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Example: Impulse Train

Harmonics [0] of the length-10 impulse train

1 N—1 ) 1.0 4 H
s 2mkn 1
= — ) N 4 :
Xk N Z x[n]e 0.5 i
n=0 004 Ib—H—o—o—H—o—o—o—o—o—o—Q—o—o—o—o—o—Q— }
1 N-1 _ -2mkn (Iﬁ 5 10 15 20
= N X[O] + Z X[n]e IN Harmonics {0} of the length-10 impulse train
n=1 1.0 |
1 0.5
= (1+0
y (1+0)
— 1 ;
N

0 5 10 15 20
S
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© Properties of the DTFS
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Properties of the Discrete-Time Fourier Series

Linearity
DTFT
Convolution

Parseval’s Theorem
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Linearity

If x[n] and y[n] have the same period,

N—-1
xln = 3" X
k=0

2mwkn

N-1 )
ylnl=>" Ve ™v,
k=0

then for any real or complex constants a and b,

z[n] = ax[n] + by[n] <+ Zx = aXk+ bYk
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If a signal has a Fourier series,

2mkn

N-1 )
x[n] =" X W,
k=0

then its discrete-time Fourier transform (DTFT) is given by

Nt 2k
k=0

where §(w) is the Dirac delta.
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Convolution

Suppose x[n] is periodic with N,

N-1
2mkn

x[n] =" Xee W,
k=0

and
y[n] = h[n] x x[n].
Then yn] is also periodic with N, and

2wk
Yi=XcH| —
k k <N>)

where H(w) is the DTFT of h[n].
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Convolution Example: Square Wave

For example, suppose we want
. . 1’ — Vi
the Fourier series of an —v
. . 0.5 —.\/( -
even-symmetric square wave with . /
period N: s
—-0.5|
1 [n— mN| < % »
y[n] = V integer m S
. CC-SA 3.0,
_1 OtherWISe https://commons.wikimedia.org/wiki/File:

Opamprelaxationoscillator.svg


https://commons.wikimedia.org/wiki/File:Opamprelaxationoscillator.svg
https://commons.wikimedia.org/wiki/File:Opamprelaxationoscillator.svg
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Convolution Example: Square Wave

We can find its Fourier Series by

realizing that [ — =
y[n] = =1 + 2x[n] = h[n], . °‘57 e

where x[n] is an impulse train, 05

and h[n] is a rectangle: o ‘

t

- https://commons.wikimedia.org/wiki/File:

Pl — 1 _Lgl <n< L;l CCSA 30,
[n] o 0 Otherwise Opamprelaxationoscillator.svg


https://commons.wikimedia.org/wiki/File:Opamprelaxationoscillator.svg
https://commons.wikimedia.org/wiki/File:Opamprelaxationoscillator.svg

Properties
000000e00

Convolution Example: Square Wave

We can find its Fourier Series by
realizing that (except for the
constant offset term, Yjp),

2wk v
\/ — 2,4 - )( 0.5 — Ve
‘ ( N ) ‘ 1./

where X = 4 (because it's an -
impulse train!), and 10 : i’ — —
t
CC-SA 3.0,
H(w) =DTFT {recta ngle} https://commons.wikimedia.org/wiki/File:
Opamprelaxationoscillator.svg
sin(wl/2)

sin(w/2)


https://commons.wikimedia.org/wiki/File:Opamprelaxationoscillator.svg
https://commons.wikimedia.org/wiki/File:Opamprelaxationoscillator.svg
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Convolution Example: Square Wave

Plugging in w = % we get

that, for k #£ 0,

v, — sin(mkL/N)
“~ “Nsin(rk/N) o= —oF
This is called a l/f2 spectrum, 50_07
a.k.a. https://en.wikipedia. gi
org/wiki/Brownian_noise, '

because R
. CC-SA 3.0,
O kL = Integer https://commons.wikimedia.org/wiki/File:
. Opamprelaxationoscillator.svg
multiple of N

Vil =

l .
ra otherwise


https://en.wikipedia.org/wiki/Brownian_noise
https://en.wikipedia.org/wiki/Brownian_noise
https://commons.wikimedia.org/wiki/File:Opamprelaxationoscillator.svg
https://commons.wikimedia.org/wiki/File:Opamprelaxationoscillator.svg
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Parseval's Theorem

...and speaking of |Y/|?. ..
Parseval's theorem says that power in the time domain equals
power in the frequency domain:

1 N—-1 N—-1
WP = T Il
n=0 k=0

This is especially useful after filtering. If y[n] = h[n] * x[n], it

might be difficult to calculate power in the time domain, but in the

frequency domain, you just use Yy, = H (%) Xy, square, and add.
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e Spectrum of a Bandpass-Filtered Periodic Signal
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Voiced Speech, Step 2: Bandpass Filter the Buzz

!
!
|
l
I
I
|
|

ANALYZER SYNTHESIZER

PITCH CHANNEL
ENERGY

SOURCE
F:Fs%"r'ﬁu? || FREQUENCY FILTER _— l_‘ SWITCH C%I'I]g:m
INATOR METER (o-25%) "l /

14 RELAXATION
OSCILLATOR

EQUALIZER | STRUCTED
SPEECH
ouT

sPIENE o | T_L RANDOM
' 01SE
| PREDISTORTING |
| QUALIZER
| SPECTRUM CHANNEL i - (Z‘-LJOE;\: ) rﬂg\: _l
I 0-300V o-25V .__-___l_ I RESTORING l RECON-
I

! FILTERS |
/

—a
TO 9 OTHER SPECTRUM CHANNELS COVERING
FREQUENCY RANGE 300-3000°V IN 300" STEPS

I'16. 2. Schematic arrangement of the Vocoder.



Bandpass
0®00

Filtering a Periodic Signal

Suppose x[n] is periodic:

2mkn

N-1 )
x[n] =" X W,
k=0

and we bandpass filter it with a filter h[n]:

yln = hln] = [,

then y[n] is periodic with Fourier series coefficients given by:

2wk
Ye=H| — ] X
k (N) k
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Bandpass Filtering a Periodic Signal

In particular, suppose that H(w) is an ideal bandpass filter with
center frequency « and bandwidth 3:

H(w) = 1 a—g < |w —27m| <a+§, Vinteger m
~ | 0 otherwise

Then Yy is just a selection of a few of the harmonics of Xj:

Y, — X a— g < ‘% —27rm‘ <a+§, Vinteger m
0  otherwise
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Voiced Speech, Step 2: Bandpass Filter the Buzz
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© Speech Synthesis: Adjusting the Level of Each Band
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Real Speech

Waveform of an open back vowel, and its magnitude FFT

0.4
0.2
0.0
—0.2
—0.4

T T T T T T
2100 2200 2300 2400 2500 2600

20 A

15 4

10

0 1 2 3 4 5 6
w (radians/sample)

—Listen<


https://en.wikipedia.org/wiki/File:Open_back_unrounded_vowel.ogg
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How to Synthesize a Vowel

Start with an impulse train (Dudley used a relaxation oscillator =
square wave, but an impulse train is better because it has a flat
spectrum):

Xk =1

Filter by a set of 10 bandpass filters H;(w), each about 300Hz
wide, then adjust the amplitude of each one (A) to match the
amplitude of the speech signal in the same band:

10 N-1
A= 4 Y (%) %

I=1 k=0
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Synthetic Speech

Time Domain: Impulse Train, Synthetic Spee€hequency Domain: Impulse Train, Synthetic Sg

1.0 1 100 A
E o5 3 50
x x
0.0 T T T T T T 04 T T T T T T T
0.00 0.01 0.02 0.03 0.04 0.05 0.0 0.5 1.0 15 20 25 3.0
750 1
_ 17 — 500
= 3
= =
’ Il |
) ‘ . . ‘ : 04 . ‘ III|.“|l||IIIIl1|||n|. ‘
0.00 0.01 0.02 0.03 0.04 0.05 0.0 0.5 2. 0 2. 5 3.0
n {samples) w (radlans,’sample)

—Listen+— Spectrum is about right. Pitch is too monotone.
Time-domain h[n] should be causal to better represent speech.


https://courses.engr.illinois.edu/ece537/fa2022/slides/synthetic_vowel.wav
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Conclusions: Attributes of DTFS that made Vocoder

Possible

@ The Fourier Series of an impulse train is X, = 1

@ Convolution:

Yl = bl < x{n] & Yi=H (22") X

© Linearity:
Zx = aXk + bYx < z[n] = ax[n] + by|[n]
@ ...and one more that will help on the homework: Parseval's

theorem.
1 N—1
=3 )2 = Z X%

n=0
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