▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

Lecture 3: Loudness, Its Definition, Measurement, and Calculation, Part 2

Mark Hasegawa-Johnson

ECE 537: Speech Processing Fundamentals

Audition	Total Masking	Partial Masking	Conclusions

1 Fundamentals of Auditory Physiology

2 Total Masking

Audition	
00000	

Outline

1 Fundamentals of Auditory Physiology

2 Total Masking

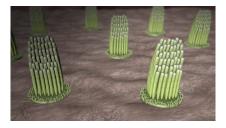
Audition 00000 Total Masking

Partial Masking 000000

Conclusions 000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Journey of Sound to the Brain



Public Domain, https://en.wikipedia.org/wiki/File:Journey_of_Sound_to_the_Brain.ogg

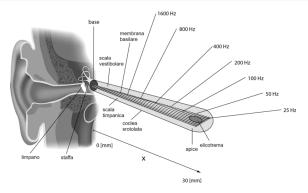
 $\rightarrow \mathsf{Watch} \ \mathsf{Video} \leftarrow$

Audition

Total Masking

Partial Masking 000000 Conclusions 000

Basilar Membrane



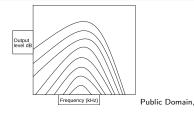
^{CC-BY 2.5, https://commons.wikimedia.org/wiki/File:Uncoiled_cochlea_with_basilar_membrane.png} The cochlea is a snail-shaped hole in your skull. The basilar membrane is an epithelium-covered collagen membrane running down the center. The basilar membrane is narrow and taut at the base, wide and floppy at the apex. The resonant frequency of each section is $\omega_{\text{res}} = \sqrt{k/m}$ (k = stiffness, m = mass). Audition 00000 Total Masking 00000000 Partial Masking

Conclusions

- When a pure tone enters through the oval window, it travels down the basilar membrane until it reaches the spot tuned to its frequency.
- At that spot, all the energy of the pure tone is absorbed by the high-amplitude vibration of the basilar membrane; the tone dies away at that spot, and doesn't travel any farther.

Public Domain, https://en. wikipedia.org/wiki/File: Cochlea_Traveling_Wave.png

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @



https://commons.wikimedia.org/wiki/File:OutputlevelMoore.svg

- The auditory filter at frequency f_1 also reacts to loud tones at frequency f_2 if $f_2 < f_1$ (f_2 is more apical than f_1), because the tone at f_2 still has lots of energy when it passes over the part of the basilar membrane tuned to f_1 .
- The filter at f_1 doesn't respond as well to frequency f_2 if $f_2 > f_1$ (f_2 is more basal than f_1), because the tone at f_2 has been absorbed by the basilar membrane before it ever reaches the part of the basilar membrane tuned to f_1 .

	d		į		
0		0		C	

Outline

Fundamentals of Auditory Physiology

2 Total Masking

3 Partial Masking

4 Conclusions

▲□▶▲□▶▲□▶▲□▶ ▲□ ���?

Adding Int	ensities		
Audition	Total Masking	Partial Masking	Conclusions
00000	○●000000	000000	000

If an acoustic signal is composed of two pure tones, at two different frequencies, their intensities add. Here's the proof, in case you didn't already know it:

$$p(t) = A_1 \cos\left(\frac{2\pi t}{T_1} + \theta_1\right) + A_2 \cos\left(\frac{2\pi t}{T_2} + \theta_2\right)$$

If the least common multiple of T_1 and T_2 is T, we can find the intensity by:

$$J = \frac{1}{\rho c} \frac{1}{T} \int_0^T p^2(t) dt$$
$$= \frac{A_1^2}{\rho c} + \frac{A_2^2}{\rho c} = J_1 + J_2$$

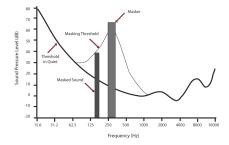
Aι	ıdi	tio	
00	00	oc	

Partial Masking

Masking

Suppose we add a masker with intensity J_m and a signal with intensity J_s . If $J_s + J_m$ differs from J_m by no more than about 1dB, then the signal is **masked** (listener can't distinguish the two signals):

$$egin{aligned} 10 \log_{10}(J_s+J_m) < 10 \log_{10}(J_m) + 1 ext{dB} \ 10 \log_{10}J_s < 10 \log_{10}J_m - 6 ext{dB} \end{aligned}$$



https://commons.wikimedia.org/wiki/File:

Audio_Mask_Graph.png

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

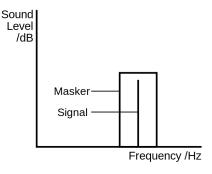
NI		N.4. 1.1	
Audition	Total Masking	Partial Masking	Conclusions
00000	○00●0000	000000	000

Narrowband On-Frequency Masking

Suppose that the masker is bandpass noise, with a bandwidth of *B*. We can still calculate its intensity, by integrating its power spectrum:

$$J_m = rac{1}{
ho c} \int E\left[|P(f)|^2
ight] df$$

... and if $\beta_s < \beta_m - 6$ dB (roughly), the signal is masked.



Public Domain,

https://commons.wikimedia.org/wiki/File:

Auditoryfiltermaskersignal1.svg

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

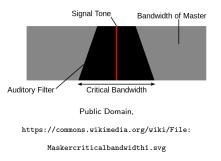
Audition Total Masking Partial Masking Conclusions

Wideband On-Frequency Masking

If the masker is wideband noise, the only part of its power that masks the signal is the part that goes through the same auditory filter:

$$J_m = \frac{1}{\rho c} \int |H(f)|^2 E\left[|P(f)|^2\right] df$$

... and if $\beta_s < \beta_m - 6 dB$ (roughly), the signal is masked.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 Audition
 Total Masking
 Partial Masking
 Conclusions

 00000
 0000000
 000000
 000

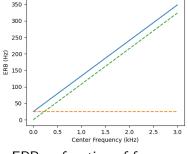
Equivalent Rectangular Bandwidth

The **equivalent rectangular bandwidth** is defined to be the bandwidth of a rectangular filter, H(f), such that masking is predicted by

$$J_m = \frac{1}{\rho c} \int |H(f)|^2 E\left[|P(f)|^2\right] df$$

Moore & Glasberg (1990) used a notched-noise experiment to estimate ERB as a function of center frequency (*f* in kHz):

$$ERB(f) = 24.7 (4.37f + 1)$$



ERB as function of frequency. ERB is 24.7Hz at f = 0, and rises linearly from there.

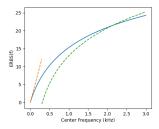
Audition	Total Masking	Partial Masking	Conclusions
00000	○00000●0	000000	000
Equivalent	Rectangular	Bandwidth Scale	

The equivalent rectangular bandwidth scale is a frequency scale. It counts the number of ERBs that separate the tone f from 0Hz. In other words, ERBS(0) = 0, and for f > 0,

$$\frac{df}{d\mathsf{ERBS}(f)} = \mathsf{ERB}(f)$$

Plugging in ERB(f) = 24.7(4.37f + 1), we find that

$$\mathsf{ERBS}(f) = 11.17 \ln \left(\frac{f + 0.312}{f + 14.675} \right) + 43.0$$



ERBS as function of frequency. ERBS is linear at low frequencies, and logarithmic at high frequencies.

	Audition Total Masking 000000 00000000				Partia 0000	Conclusions 000			
_			_			_	 1 0		

Equivalent Rectangular Bandwidth Scale

$$\mathsf{ERBS}(f) = 11.17 \ln \left(\frac{f + 0.312}{f + 14.675} \right) + 43.0$$

In a beautiful example of converging scientific evidence, it has been shown that ERBS(f) is approximately equal to the number of millimeters between f and the apex of the basilar membrane. In other words, one ERB is approximately equal to one millimeter on the basilar membrane.

Public Domain, https: //en.wikipedia.org/ wiki/File:Cochlea_ Traveling_Wave.png

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Audition	Total Masking	Partial Masking	Conclusion
00000	00000000	●०००००	
Outline			

1 Fundamentals of Auditory Physiology

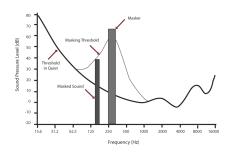
2 Total Masking

Audition	Total Masking	Partial Masking	Conclusions
00000	0000000	○●0000	000
Partial Mask	ing		

Even if the signal is loud enough to be unmasked, its effective loudness is reduced because of the masker. Fletcher & Munson modeled this phenomenon by the equation

$$G=\sum_k b_k G(L_k),$$

where b_2 can be less than one if f_1 and f_2 are within the same critical band.



https://commons.wikimedia.org/wiki/File:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

	ng Loudnesses	00000	000
Audition	Total Masking	Partial Masking	Conclusions
00000	0000000	○0●000	000

How loud is the sum of pure tones? It depends.

• If f_1 and f_2 are close together (e.g., $|f_2 - f_1| < 100 \text{Hz}$), then the loudness is

$$G=G(L(J_1+J_2)),$$

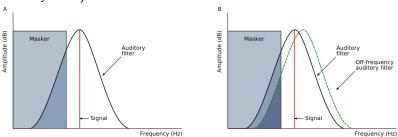
i.e., add the intensities, find the corresponding loudness level, and convert it to loudness.

• If f_1 and f_2 are **far apart**, however (e.g., $|f_2 - f_1| > 1000$ Hz), then the tone is louder:

$$G = G(L(J_1)) + G(L(J_2)) > G(L(J_1 + J_2))$$

• In between those two extremes, the total loudness is $G(L_1) + b_2 G(L_2)$, where b_2 gradually climbs up toward 1.0 as f_2 and f_1 become farther apart.

The value of b_2 is determined by the critical band in which the SNR (= J_s/J_m) is highest (J_s, J_m = intensity passed by the auditory filter).



Public Domain, https://commons.wikimedia.org/wiki/File:Off_F_listening.svg

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Audition	Total Masking	Partial Masking	Conclusions
00000	0000000	○000●0	000
The formul	a for h		

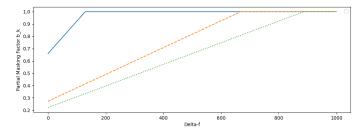
- If $\Delta f = |f_2 f_1| < B_{\text{center}}$, then just add the intensities of the two tones, and calculate loudness from that. ($B_{\text{center}} \in \{100, 200, 400, 800\}$, depending on f_2).
- If $\Delta f \geq B_{center}$, then

$$b_2 = \left[\frac{250 + \Delta f}{1000}\right] Q(x)$$

where Q(x) is a function of $x = \beta_1 + 30 \log_{10} f_1 - 95 \approx L_1$.

Audition	Total Masking	Partial Masking	Conclusions		
00000	00000000	○0000●	000		
The formula for b_k					

$$b_2 = \left\lceil \frac{250 + \Delta f}{1000} \right\rceil Q(x)$$



Solid: x = 20dB. Dash: x = 40dB. Dot: x = 60dB. $x = \beta_1 + 30 \log_{10} f_1 - 95 \approx L.$

Audition	

Outline

I Fundamentals of Auditory Physiology

2 Total Masking

Conclusions

- A critical band is about 1mm on the basilar membrane.
- Within a critical band, intensities add. Therefore, a tone is masked if it doesn't change the level in the critical band by more than 1dB (i.e., signal level is 6dB below masker level).
- Critical bandwidths are roughly 25 + f/10Hz.

Audition	Total Masking	Partial Masking	Conclusions
00000	0000000	000000	000
Conclusions			

• If two tones are far enough apart,

$$G=\sum_k b_k G(L_k)$$

• The masking factor, b_k , varies from $b_k \ge 0.25$ if $\Delta f = 0$ to $b_k = 1$ if $\Delta f > 1000$:

$$b_2 = \left[\frac{250 + \Delta f}{1000}\right] Q(x)$$

where $Q(x) \approx 2.6$ at 20dB, and $Q(x) \approx 1$ for levels of 40dB or more.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる