ECE 537 Fundamentals of Speech Processing Problem Set 9

UNIVERSITY OF ILLINOIS
Department of Electrical and Computer Engineering

Assigned: Sunday, 11/6/2022; Due: Friday, 11/11/2022
Reading: Vaswani et al., "Attention is All You Need," 2017

1. In the Transformer, positional embeddings enable a query and a key to match one another based on their relative position, rather than based on their content. The positional embedding is a $d_{\text {model }}{ }^{-d i m e n s i o n a l}$ vector whose $(2 i)^{\text {th }}$ and $(2 i)^{\text {st }}$ elements, at time t, are:

$$
\begin{aligned}
e_{2 i}^{t} & =\sin \left(\frac{t}{10000^{2 i / d_{\text {model }}}}\right) \\
e_{2 i+1}^{t} & =\cos \left(\frac{t}{10000^{2 i / d_{\text {model }}}}\right)
\end{aligned}
$$

These are then added to the query and key prior to computing attention, thus

$$
\begin{aligned}
& e^{t}=\left[e_{0}^{t}, e_{1}^{t}, \cdots, e_{d_{\text {model }}-1}^{t}\right] \\
& {\left[\begin{array}{c}
e^{0} \\
\vdots \\
e^{n-1}
\end{array}\right] } \\
& \operatorname{head}_{i}=\text { Attention }\left((Q+E) W_{i}^{Q},(K+E) W_{i}^{K},(V+E) W_{i}^{V}\right)
\end{aligned}
$$

where the matrices W_{i}^{Q} and W_{k}^{K} each are of dimension $d_{\text {model }} \times d_{k}$.
Consider the matrix $A=W_{i}^{K} W_{i}^{Q, T}$. All parts of this problem will ask you to calculate input-output relations of the Attention operation by thinking about the values of the following submatrix:

$$
A_{(2 i: 2 i+1),(2 j: 2 j+1)}=\left[\begin{array}{cc}
A_{2 i, 2 j} & A_{2 i, 2 j+1} \\
A_{2 i+1,2 j} & A_{2 i+1,2 j+1}
\end{array}\right]
$$

(a) (1 point) What should be the values of $A_{(2 i: 2 i+1),(2 j: 2 j+1)}$ so that the attention, $\alpha_{\tau, t}$, is maximized when the time alignment of the key (the time index τ of vector k^{τ}) precedes the time index of the query (time index t of vector q^{t}) by exactly T time steps $(\tau=t-T)$?

Solution: We want to maximize the dot product

$$
k^{\tau} W_{i}^{K} w_{i}^{Q, T} q^{t}=k^{\tau} A q^{t}
$$

This is maximized when the vectors k^{τ} and $A q^{t}$ point in the same direction, i.e., we want

$$
\left[\begin{array}{c}
\sin \left(\frac{\tau}{10000^{2 i / d_{\text {model }}}}\right) \\
\cos \left(\frac{\tau}{10000^{2 i / d_{\text {model }}}}\right)
\end{array}\right]=\left[\begin{array}{cc}
A_{2 i, 2 j} & A_{2 i, 2 j+1} \\
A_{2 i+1,2 j} & A_{2 i+1,2 j+1}
\end{array}\right]\left[\begin{array}{c}
\sin \left(\frac{t}{10000^{2 i / d_{\text {model }}}}\right) \\
\cos \left(\frac{t}{10000^{2 i / d_{\text {model }}}}\right)
\end{array}\right]
$$

This can be accomplished by using trig identities such as

$$
\begin{aligned}
\sin (\alpha-\beta) & =\sin \alpha \cos \beta-\cos \alpha \sin \beta \\
\cos (\alpha-\beta) & =\cos \alpha \cos \beta+\sin \alpha \sin \beta,
\end{aligned}
$$

where we set

$$
\begin{aligned}
& \alpha=\frac{t}{10000^{2 i / d_{\text {model }}}} \\
& \beta=\frac{T}{10000^{2 i / d_{\text {model }}}}
\end{aligned}
$$

This gives us the solution:

$$
\left[\begin{array}{cc}
A_{2 i, 2 j} & A_{2 i, 2 j+1} \\
A_{2 i+1,2 j} & A_{2 i+1,2 j+1}
\end{array}\right]=\left[\begin{array}{cc}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta
\end{array}\right]
$$

(b) (1 point) Suppose that you require a less-precise time alignment. Suppose that you want the attention to be maximized when $t-\tau \in\left[T-\frac{B}{2}, T+\frac{B}{2}\right]$, i.e., the separation between τ and t should be $T \pm \frac{B}{2}$. This can be accomplished by starting with the A matrix you computed in part (a), and then zeroing some of its elements. Which elements of A should be zeroed so that $\alpha_{\tau, t}$ is maximum for an $t-\tau \in\left[T-\frac{B}{2}, T+\frac{B}{2}\right]$?

Solution: The period of the sinusoids in dimensions $2 i$ and $2 i+1$ is $2 \pi 10000^{2 i / d_{\text {model }}}$. Let's say that the peak of a sinusoid has a width of about 1 radian, i.e., about $10000^{2 i / d_{\text {model }}}$ time steps. Thus we want to zero out any elements of A such that

$$
B>10000^{2 i / d_{\text {model }}}
$$

Solving, we find that we should zero out the elements of A such that

$$
i<\frac{d_{\text {model }} \log B}{2 \log (10000)}
$$

(c) (1 point) The previous parts have considered a head that cares about relative position. In this part, instead, consider a head that only cares whether or not a query and key have the same content. Suppose, for example, that for this head, A is the identity matrix. Then, assuming that $\left|k^{\tau}\right|=1$ and $\left|q^{t}\right|=1$, the inner product $k^{\tau} A q^{t, T}=k^{\tau} q^{t, T}$ is maximized if $k^{\tau}=q^{t}$.
Suppose that $k^{\tau}=q^{t}$ and A is the identity matrix, but we also have to consider the contribution of the positional embeddings. Let's define \tilde{q} and \tilde{k} to be the position-enhanced embeddings, thus

$$
\begin{aligned}
\tilde{q}_{2 i}^{t} & =q_{2 i}^{t}+e_{2 i}^{t} \\
\tilde{k}_{2 i}^{\tau} & =k_{2 i}^{\tau}+e_{2 i}^{\tau}
\end{aligned}
$$

What are the mean and variance of the inner product $\tilde{k}^{\tau} \tilde{q}^{t, T}$, assuming that $k^{\tau}=q^{t},\left|k^{\tau}\right|=1$ and $\left|q^{t}\right|=1$?
Hint: what are the mean and variance of $\sin \alpha \sin \beta$ if α and β are each independent random variables uniformly distributed between 0 and 2π ? What are the mean and variance of $k_{2 i}^{\tau} e_{2 i}^{t}$ if $k_{2 i}^{\tau}$ is a zeromean, unit-variance random variable independent of e_{21}^{t} ? How many such terms are added together in order to compute the inner product $\tilde{k}^{\tau} \tilde{q}^{t, T}$?

Solution: The expected value and variance of $\sin \alpha \sin \beta$, if α and β are each independent random variables uniformly distributed between 0 and 2π, are

$$
\begin{aligned}
E[\sin \alpha \sin \beta] & =E[\sin \alpha] E[\sin \beta]=0 \\
E\left[\sin ^{2} \alpha \sin ^{2} \beta\right] & =E\left[\sin ^{2} \alpha\right] E\left[\sin ^{2} \beta\right]=\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)=\frac{1}{4}
\end{aligned}
$$

The mean and variance of $k_{2 i}^{\tau} e_{2 i}^{t}$ are

$$
\begin{aligned}
E\left[k_{2 i}^{\tau} \sin \beta\right] & =E\left[k_{2 i}^{\tau}\right] E[\sin \beta]=0 \\
E\left[\left(k_{2 i}^{\tau}\right)^{2} \sin ^{2} \beta\right] & =E\left[\left(k_{2 i}^{\tau}\right)^{2}\right] E\left[\sin ^{2} \beta\right]=1 \times \frac{1}{2}=\frac{1}{2}
\end{aligned}
$$

Thus

$$
\begin{aligned}
E\left[\tilde{k}^{\tau} \tilde{q}^{t, T}\right] & =k^{\tau} q^{t, T}+E\left[k^{\tau} e^{t, T}\right]+E\left[e^{\tau} q^{t, T}\right]+E\left[e^{\tau} e^{t, T}\right] \\
& =k^{\tau} q^{t, T}=1
\end{aligned}
$$

The variance of each element in the sum is

$$
\begin{aligned}
\operatorname{Var}\left(\tilde{q}_{2 i}^{t} \tilde{k}_{2 i}^{\tau}\right) & =\operatorname{Var}\left(k_{2 i}^{\tau} q_{2 i}^{t}\right)+\operatorname{Var}\left(k_{2 i}^{\tau} e_{2 i}^{t}\right)+\operatorname{Var}\left(e_{2 i}^{\tau} q_{2 i}^{t}\right)+\operatorname{Var}\left(e_{2 i}^{\tau} e_{2 i}^{t}\right) \\
& =0+\frac{1}{2}+\frac{1}{2}+\frac{1}{4} \\
& =\frac{5}{4}
\end{aligned}
$$

and so the total variance is $\frac{5}{4} d_{\text {model }}$.

