ECE 537 Fundamentals of Speech Processing Problem Set 8

UNIVERSITY OF ILLINOIS
Department of Electrical and Computer Engineering

Assigned: Sunday, 10/30/2022; Due: Friday, 11/4/2022
Reading: Graves, Fernández, Gomez \& Schmidhuber, "Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks," 2006

1. The CTC article defines as the joint probability of current and future states, $\beta_{t}(s)=p\left(\mathbf{l}_{s:(2 U+1)}^{\prime} \mid \mathbf{x}_{t: T}\right)$ (Eq. (9) in the article), as a consequence of which the posterior state probability has the awkward form shown in the summand of Eq. (14), $p\left(\pi_{t}=l_{s}^{\prime} \mid \mathbf{l}, \mathbf{x}\right)=\frac{1}{y_{l_{s}^{\prime}}^{t}} \alpha_{t}(s) \beta_{t}(s)$. Note that there is an inconsistency in the article: Equations (5) and (9) define s as an index into the length- $|\mathbf{l}|$ sequence \mathbf{l}, but Equations (6)-(8) and (10)-(16) define s as an index into the length- $(2|\mathbf{l}|+1)$ sequence \mathbf{l}^{\prime}. We will assume the latter definition, and will use the symbol U to mean $|\mathbf{l}|$.
In this problem, we will consider a definition of $\beta_{t}(s)$ that gives slightly cleaner equations. Consider the following definition:

$$
\begin{equation*}
\beta_{t}(s) \equiv p\left(\mathbf{l}_{s:(2 U+1)}^{\prime} \mid \mathbf{x}_{(t+1): T}, \pi_{t}=l_{s}^{\prime}\right) \tag{1}
\end{equation*}
$$

Note that Eq. (1] specifies that the label sequence starting from time t is $\mathbf{l}_{s:(2 U+1)}$, but that, rather than depending on $\mathbf{x}_{t: T}$, this probability is dependent on $\mathbf{x}_{(t+1): T}$ and $\pi_{t}=l_{s}^{\prime}$.
(a) (1 point) Given the definition of $\beta_{t}(s)$ in Eq. (1), and the definition of $\alpha_{t}(s)$ in the article's Eq. (5), what is $p\left(\pi_{t}=l_{s}^{\prime} \mid \mathbf{l}, \mathbf{x}\right)$ as a function of $\alpha_{t}(s)$ and $\beta_{t}(s)$?

Solution:

$$
p\left(\pi_{t}=l_{s}^{\prime} \mid \mathbf{l}, \mathbf{x}\right)=\alpha_{t}(s) \beta_{t}(s)
$$

(b) (1 point) Given the definition of $\beta_{t}(s)$ in Eq. (1), what is the "initialize" step of the backward algorithm? In other words, find a formula for $\beta_{T}(s)$ in terms of any of the neural net outputs. If you wish, you can use U to mean the length of \mathbf{l}, and $2 U+1$ to mean the length of $\mathbf{1}^{\prime}$.

Solution:

$$
\begin{aligned}
\beta_{T}(s) & \equiv p\left(\mathbf{l}_{s:(2 U+1)}^{\prime} \mid \mathbf{x}_{(T+1): T}, \pi_{T}=l_{s}^{\prime}\right) \\
& = \begin{cases}1 & s \in\{2 U, 2 U+1\} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

(c) (1 point) Given the definition of $\beta_{t}(s)$ in Eq. (1), what is the "iterate" step of the backward algorithm? In other words, find a formula for $\beta_{t}(s)$ in terms of $\beta_{t+1}\left(s^{\prime}\right)$, and in terms of any of the neural net outputs. Be sure to take into account the fact that the character at time $t+1$ may be s, $s+1$, or, if $l_{s}^{\prime} \neq b$ and $l_{s}^{\prime} \neq l_{s+2}^{\prime}, s+2$. Note that your answer will be a little different from Eq. (10) in the article, because our definition of $\beta_{t}(s)$ is a little different.

Solution:

$$
\begin{array}{rlr}
\beta_{t}(s) & \equiv p\left(\mathbf{l}_{s:(2 U+1)}^{\prime} \mid \mathbf{x}_{(t+1): T}, \pi_{t}=l_{s}^{\prime}\right) \\
& = \begin{cases}y_{l_{s}}^{t+1} \beta_{t+1}(s)+y_{l_{s+1}}^{t+1} \beta_{t+1}(s+1) & l_{s}^{\prime}=b \text { or } l_{s}^{\prime}=l_{s+2}^{\prime} \\
y_{l_{s}^{\prime}}^{t+1} \beta_{t+1}(s)+y_{l_{s+1}^{\prime+1}}^{t+1} \beta_{t+1}(s+1)+y_{l_{s+2}^{\prime}}^{t+1} \beta_{t+1}(s+2) & \text { otherwise }\end{cases}
\end{array}
$$

(d) (1 point) The new definition of $\beta_{t}(s)$ requires a revision of Equations (14) and (15) in the article. How should these two equations read if one is using the new definition of $\beta_{t}(s)$?

Solution: Equation (14) should read:

$$
p(\mathbf{l} \mid \mathbf{x})=\sum_{s=1}^{\left|\mathbf{l}^{\prime}\right|} \alpha_{t}(s) \beta_{t}(s)
$$

Equation (15) should read:

$$
\frac{\partial p(\mathbf{l} \mid \mathbf{x})}{\partial y_{k}^{t}}=\frac{1}{y_{k}^{t}} \sum_{s \in \operatorname{lab}(\mathbf{l}, k)} \alpha_{t}(s) \beta_{t}(s)
$$

2. Using the un-numbered equations preceding Eq. (15) in the article, it's possible to re-write Eq. (15) as

$$
\frac{\partial p(\mathbf{l} \mid \mathbf{x})}{\partial y_{k}^{t}}=\frac{1}{y_{k}^{t}} p\left(\mathbf{l}, \pi_{t}=k \mid \mathbf{x}\right)
$$

where $p\left(\mathbf{l}, \pi_{t}=k \mid \mathbf{x}\right)$ is the probability that the label sequence is \mathbf{l}, and that the character generated at time t is k. Differentiating the loss function $\mathcal{L}=-\ln p(\mathbf{l} \mid \mathbf{x})$ therefore gives us

$$
\frac{\partial \mathbf{L}}{\partial y_{k}^{t}}=-\frac{1}{y_{k}^{t}} \frac{p\left(\mathbf{l}, \pi_{t}=k \mid \mathbf{x}\right)}{p(\mathbf{l} \mid \mathbf{x})}=-\frac{1}{y_{k}^{t}} p\left(\pi_{t}=k \mid \mathbf{l}, \mathbf{x}\right)
$$

Defining $\gamma_{t}(k)=p\left(\pi_{t}=k \mid \mathbf{l}, \mathbf{x}\right)$ gives the equation reported in lecture:

$$
\frac{\partial \mathbf{L}}{\partial y_{k}^{t}}==-\frac{\gamma_{t}(k)}{y_{k}^{t}}
$$

Suppose we know that the softmax outputs, y_{k}^{t}, are defined in terms of the softmax logits, u_{i}^{t}, as

$$
y_{k}^{t}=\frac{e^{u_{k}^{t}}}{\sum_{j} e^{u_{j}^{t}}}
$$

You may recall, from homework 7 , that the derivative of the softmax can be written in this way:

$$
\frac{\partial y_{k}^{t}}{\partial u_{i}^{t}}= \begin{cases}y_{k}^{t}\left(1-y_{k}\right) & i=k \tag{2}\\ -y_{k}^{t} y_{i}^{t} & \text { otherwise }\end{cases}
$$

Eq. (2) is sometimes written as:

$$
\begin{equation*}
\frac{\partial y_{k}^{t}}{\partial u_{i}^{t}}=y_{k}^{t}\left(\delta_{i k}-y_{i}^{t}\right) \tag{3}
\end{equation*}
$$

where $\delta_{i k}$ is an indicator function, defined as

$$
\delta_{i k}= \begin{cases}1 & i=k \\ 0 & \text { otherwise }\end{cases}
$$

Remember that the chain rule is

$$
\frac{\partial \mathbf{L}}{\partial u_{i}^{t}}=\sum_{k} \frac{\partial \mathbf{L}}{\partial y_{k}^{t}} \frac{\partial y_{k}^{t}}{\partial u_{i}^{t}}
$$

Use the chain rule to prove Eq. (16) in the article, i.e., to show that $\frac{\partial \mathbf{L}}{\partial u_{i}^{t}}=y_{i}^{t}-\gamma_{t}(i)$. Hint: what is $\sum_{k} \gamma_{t}(k) ?$

Solution:

$$
\begin{aligned}
\frac{\partial \mathbf{L}}{\partial u_{i}^{t}} & =\sum_{k} \frac{\partial \mathbf{L}}{\partial y_{k}^{t}} \frac{\partial y_{k}^{t}}{\partial u_{i}^{t}} \\
& =-\sum_{k} \frac{\gamma_{t}(k)}{y_{k}^{t}} y_{k}^{t}\left(\delta_{i k}-y_{i}^{t}\right) \\
& =-\sum_{k} \gamma_{t}(k) \delta_{i k}+\sum_{k} \gamma_{t}(k) y_{i}^{t} \\
& =-\gamma_{t}(i)+y_{i}^{t}
\end{aligned}
$$

