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1. The CTC article defines as the joint probability of current and future states, βt(s) = p(l′s:(2U+1)|xt:T )

(Eq. (9) in the article), as a consequence of which the posterior state probability has the awkward form
shown in the summand of Eq. (14), p(πt = l′s|l,x) = 1

yt
l′s

αt(s)βt(s). Note that there is an inconsistency

in the article: Equations (5) and (9) define s as an index into the length-|l| sequence l, but Equations
(6)-(8) and (10)-(16) define s as an index into the length-(2|l|+1) sequence l′. We will assume the latter
definition, and will use the symbol U to mean |l|.
In this problem, we will consider a definition of βt(s) that gives slightly cleaner equations. Consider the
following definition:

βt(s) ≡ p(l′s:(2U+1)|x(t+1):T , πt = l′s) (1)

Note that Eq. (1) specifies that the label sequence starting from time t is ls:(2U+1), but that, rather than
depending on xt:T , this probability is dependent on x(t+1):T and πt = l′s.

(a) (1 point) Given the definition of βt(s) in Eq. (1), and the definition of αt(s) in the article’s Eq. (5),
what is p(πt = l′s|l,x) as a function of αt(s) and βt(s)?

Solution:
p(πt = l′s|l,x) = αt(s)βt(s)

(b) (1 point) Given the definition of βt(s) in Eq. (1), what is the “initialize” step of the backward
algorithm? In other words, find a formula for βT (s) in terms of any of the neural net outputs. If
you wish, you can use U to mean the length of l, and 2U + 1 to mean the length of l′.

Solution:

βT (s) ≡ p(l′s:(2U+1)|x(T+1):T , πT = l′s)

=

{
1 s ∈ {2U, 2U + 1}
0 otherwise

(c) (1 point) Given the definition of βt(s) in Eq. (1), what is the “iterate” step of the backward algo-
rithm? In other words, find a formula for βt(s) in terms of βt+1(s′), and in terms of any of the
neural net outputs. Be sure to take into account the fact that the character at time t+ 1 may be s,
s+ 1, or, if l′s 6= b and l′s 6= l′s+2, s+ 2. Note that your answer will be a little different from Eq. (10)
in the article, because our definition of βt(s) is a little different.
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Solution:

βt(s) ≡ p(l′s:(2U+1)|x(t+1):T , πt = l′s)

=

{
yt+1
l′s

βt+1(s) + yt+1
l′s+1

βt+1(s+ 1) l′s = b or l′s = l′s+2

yt+1
l′s

βt+1(s) + yt+1
l′s+1

βt+1(s+ 1) + yt+1
l′s+2

βt+1(s+ 2) otherwise

(d) (1 point) The new definition of βt(s) requires a revision of Equations (14) and (15) in the article.
How should these two equations read if one is using the new definition of βt(s)?

Solution: Equation (14) should read:

p(l|x) =

|l′|∑
s=1

αt(s)βt(s)

Equation (15) should read:

∂p(l|x)

∂ytk
=

1

ytk

∑
s∈lab(l,k)

αt(s)βt(s)

2. Using the un-numbered equations preceding Eq. (15) in the article, it’s possible to re-write Eq. (15) as

∂p(l|x)

∂ytk
=

1

ytk
p(l, πt = k|x),

where p(l, πt = k|x) is the probability that the label sequence is l, and that the character generated at
time t is k. Differentiating the loss function L = − ln p(l|x) therefore gives us

∂L

∂ytk
= − 1

ytk

p(l, πt = k|x)

p(l|x)
= − 1

ytk
p(πt = k|l,x)

Defining γt(k) = p(πt = k|l,x) gives the equation reported in lecture:

∂L

∂ytk
== −γt(k)

ytk

Suppose we know that the softmax outputs, ytk, are defined in terms of the softmax logits, uti, as

ytk =
eu

t
k∑

j e
ut
j

You may recall, from homework 7, that the derivative of the softmax can be written in this way:

∂ytk
∂uti

=

{
ytk(1− yk) i = k
−ytkyti otherwise

(2)

Eq. (2) is sometimes written as:
∂ytk
∂uti

= ytk(δik − yti), (3)
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where δik is an indicator function, defined as

δik =

{
1 i = k

0 otherwise

Remember that the chain rule is
∂L

∂uti
=
∑
k

∂L

∂ytk

∂ytk
∂uti

Use the chain rule to prove Eq. (16) in the article, i.e., to show that ∂L
∂ut

i
= yti − γt(i). Hint: what is∑

k γt(k)?

Solution:

∂L

∂uti
=
∑
k

∂L

∂ytk

∂ytk
∂uti

= −
∑
k

γt(k)

ytk
ytk(δik − yti)

= −
∑
k

γt(k)δik +
∑
k

γt(k)yti

= −γt(i) + yti
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