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1. Consider the problem of learning an HMM with mixture Gaussian observation probabilities, i.e., the
type of probability density function shown in Eq. (49) of the article. Plug the article’s Eq. (49) into
Eq. (41), use Eq. (50) to devise an appropriate Lagrangian, and show that Eq. (52) is the result. Note:
if you use Eq. (41) as the definition of Baum’s auxiliary function, you will wind up with the following
definition of γt(j, k):

γt(j, k) = γt(j)

[
c̄jkN (ot, µ̄jk, Ūjk)∑M

m=1 c̄jmN (ot, µ̄jm, Ūjm)

]
(1)

The article assumes, for this section only, a slightly different definition of Baum’s auxiliary function,
which is described in more detail in reference [35] of the article. That slightly different definition of
Baum’s auxiliary gives the definition of γt(j, k) shown in the article:

γt(j, k) = γt(j)

[
cjkN (ot, µjk, Ujk)∑M

m=1 cjmN (ot, µjm, Ujm)

]
(2)

Eq. (1) is the one you should find in your solution to this problem, but Eq. (2) is actually easier to use
in practice.

Solution:

Q(λ, λ̄) =
∑
Q

P (Q|O, λ) logP (O,Q|λ̄)

=

T∑
t=1

N∑
j=1

P (qt = j|O, λ) log b̄j(ot) + other terms

=

T∑
t=1

N∑
j=1

γt(j) log

M∑
m=1

cjmN [ot, µjm, Ujm] + other terms

We can therefore devise the Lagrangian as

J(λ, λ̄) =

T∑
t=1

N∑
j=1

γt(j) log

M∑
m=1

c̄jmN
[
ot, µ̄jm, Ūjm

]
+
∑
j

νj

(
1−

M∑
m=1

c̄jm

)
+ other terms

1



Differentiating w.r.t. c̄jm, we get

∂J(λ, λ̄)

∂c̄jm
=

T∑
t=1

γt(j)

(
N
[
ot, µ̄jm, Ūjm

]∑M
k=1 c̄jkN

[
ot, µ̄jk, Ūjk

])− νj
Setting that equal to zero, we find that

νj =

T∑
t=1

γt(j)

(
N
[
ot, µ̄jm, Ūjm

]∑M
k=1 c̄jkN

[
ot, µ̄jk, Ūjk

])

1 =
1

νj

T∑
t=1

γt(j)

(
N
[
ot, µ̄jm, Ūjm

]∑M
k=1 c̄jkN

[
ot, µ̄jk, Ūjk

])

c̄jm =
1

νj

T∑
t=1

γt(j)

(
c̄jm

N
[
ot, µ̄jm, Ūjm

]∑M
k=1 c̄jkN

[
ot, µ̄jk, Ūjk

])

=
γt(j,m)

νj

All that remains is to choose νj in order to satisfy the constraint, giving

c̄jm =
γt(j,m)∑M
k=1 γt(j, k)

2. Suppose that Eqs. (96) and (97) in the article are true, but suppose that cs is not defined as in Eq. (91);
instead, suppose that cs is just some arbitrary constant that depends on the time index, s. Prove that,
even under this relaxed assumption, Eq. (95) is still equal to Eq. (40b).

Solution:

āij =

∑T−1
t=1 α̂t(i)aijbj(ot+1)β̂t+1(j)∑T−1

t=1

∑N
j=1 α̂t(i)aijbj(ot+1)β̂t+1(j)

=

∑T−1
t=1 Ctαt(i)aijbj(ot+1)Dt+1βt+1(j)∑T−1

t=1

∑N
j=1 Ctαt(i)aijbj(ot+1)Dt+1βt+1(j)

=

(∏T
s=t cs

)∑T−1
t=1 αt(i)aijbj(ot+1)βt+1(j)(∏T

s=1 cs

)∑T−1
t=1

∑N
j=1 αt(i)aijbj(ot+1)βt+1(j)

=

∑T−1
t=1 αt(i)aijbj(ot+1)βt+1(j)∑T−1

t=1

∑N
j=1 αt(i)aijbj(ot+1)βt+1(j)

=

∑T−1
t=1 ξt(i, j)∑T−1

t=1

∑N
j=1 ξt(i, j)

=

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)
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