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1. Equation (4) in the article gives a formula for the prediction sum-squared error (a.k.a. the energy of the
prediction residual) of an (m − 1)-tap linear prediction. To see why this is the case, let’s explore the
origin of some of the equations in this section.

(a) (1 point) Define εm in the following way:

εm =

N+p∑
n=p+1

(d(m−1)
n )2,

where

d(m)
n = sn −

m−1∑
k=1

a
(m−1)
k sn−k,

and a
(m)
k is the kth coefficient of an order-m linear predictor. Solve for ∂εm

∂a
(m−1)
k

in terms of the

coefficients a
(m)
i and the speech signal sn.

Solution:

∂εm

∂a
(m−1)
k

= −2

N+p∑
n=p+1

snsn−k + 2

N+p∑
n=p+1

m−1∑
i=1

a
(m−1)
i sn−isn−k

(b) (1 point) Consider setting ∂εm
∂a

(m−1)
k

= 0 simultaneously for all k ∈ {1, . . . ,m}; this results in m linear

equations in terms of sn and a
(m−1)
i . Convert these m linear equations into a single matrix equation

in terms of the vector ~am−1 = [a
(m−1)
1 , . . . , a

(m−1)
m ]T , the vector ~cm−1 = [φ(0, 1), . . . , φ(0,m− 1)]T ,

and the matrix Φm−1 defined as

Φm−1 =

 φ(1, 1) · · · φ(1,m− 1)
...

. . .
...

φ(m− 1, 1) · · · φ(m− 1,m− 1)

 ,
where

φ(i, j) =

N+p∑
n=p+1

sn−isn−j

1



Solution:
Φm−1~am−1 = ~cm−1

(c) (1 point) Notice that the equation ∂εm
∂a

(m−1)
k

= 0 can be written as

N+p∑
n=p+1

d(m−1)
n sn−k = 0 (1)

Eq. (1) is called the orthogonality condition. It says that the coefficient a
(m−1)
k that minimizes

εm is the one that eliminates all correlation between d
(m−1)
n (the prediction residual) and sn−k

(the predictor). Use the orthogonality condition to write εm as an affine function of the coefficients

a
(m−1)
i , where the coefficients in the linear function are the covariance terms φ(i, j). If your equation

has any terms that are quadratic in a
(m−1)
i , then you haven’t simplified it far enough, keep going.

Solution:

εm =

N+p∑
n=p+1

(d(m−1)
n )2

=

N+p∑
n=p+1

d(m)
n

(
sn −

m−1∑
k=1

a
(m−1)
k sn−k

)

=

N+p∑
n=p+1

d(m−1)
n sn

=

N+p∑
n=p+1

(
sn −

m−1∑
k=1

a
(m−1)
k sn−k

)
sn

= φ(0, 0)−
m−1∑
k=1

a
(m−1)
k φ(0, k)

(d) (1 point) The covariance LPC method solves the equation Φ~a = ~c in three steps. First, it com-
putes the Cholesky decomposition Φ = LLT , where L is a lower-triangular matrix. The Cholesky
decomposition is an O{p3} operation. Second, it solves for the vector ~q in the equation L~q = ~c; this
is an O{p2} operation. Third, it solves for ~a either directly, by solving the equation ~q = LT~a, or
indirectly, using the “known relation between the partial correlations and the predictor coefficients”
that is named but not described in the article; in either case, this is an O{p2} operation.

The part of all this that’s interesting to us is that, if we define the order-m equations as Φm−1 =
Lm−1L

T
m−1, Lm−1~qm−1 = ~cm−1, and ~qm−1 = LTm−1~am−1, then we get that

m−1∑
i=1

q2i = ~qTm−1~qm−1 = ~aTm−1Φm−1~am−1 = ~aTm−1~cm−1 (2)

Use Eq. (2) to re-write your solution to part (c) in terms of the coefficients qi.

Digression: here is an observation that is not necessary to solve this problem, but that might help
you to deepen your understanding of LPC. In the Cholesky decomposition Φ = LLT , the mth row
of L only depends on the first m rows and columns of Φ, therefore Lm−1 is a submatrix of Lm.
Similarly, in the equation L~q = ~c, the mth coefficient, qm, depends only on the first m rows of L,
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and the first m elements of ~c, therefore the vector ~qm−1 is a subvector of ~qm. The same is not true
of the equation LT ~qm = ~am. The ith predictor coefficient of an order-m predictor, is therefore not
the same as the ith coefficient of an order-p predictor:

a
(m)
i 6= a

(p)
i ,

but the partial correlation coefficient qi/εi is the same for any order, m or p, as long as m ≥ i and
p ≥ i.

Solution:
m−1∑
i=1

q2i = ~aTm−1~cm−1 =

m−1∑
k=1

a
(m−1)
k φ(0, k)

Therefore

εm = φ(0, 0)−
m−1∑
i=1

q2i

2. (1 point) Suppose that dn is the LPC residual, and vn is the pitch prediction residual, thus

vn = dn − β1dn−M+1 − β2dn−M − β3dn−M−1 (3)

If dn were perfectly periodic with a period of M , then it would be possible to set vn = 0 (after the first
pitch period) by simply choosing β1 = 0, β2 = 1, β3 = 0. The reason Eq. (3) contains three delay terms,
instead of just one, is that the pitch period might not be an integer.

Suppose that dn is perfectly periodic, but with a period τ that is not an integer. In this case, the ideal
pitch predictor should be Pd(e

jω) = e−jωτ in the range −π < ω < π. What is the inverse transform,
pd[n], of this pitch predictor? What would be reasonable values to choose for M , β1, β2, and β3?

Solution:

pd[n] =
1

2π

∫ π

−π
ejω(n−τ)dω

= sinc (π(n− τ))

A reasonable choice for M would be the integer nearest to τ , and the coefficients could be set to

β1 = sinc (π(M − 1− τ))

β2 = sinc (π(M − τ))

β3 = sinc (π(M + 1− τ))

3. The idea of perceptual noise shaping is to shape the speech signal, producing Y (ω) = (1 − R(ω))S(ω),
prior to quantizing it. Quantization generates a synthetic output, q̂n, in order to minimize

ε =

N+p∑
n=p+1

q2n =

N+p∑
n=p+1

(yn − ŷn)2,

where

Ŷ (ω) =
1

1− PA(ω)
Q̂(ω)

Ŝ(ω) =
1

1−R(ω)
Ŷ (ω)
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(a) (1 point) Use Parseval’s theorem to express ε as an integral, over frequency, of some function of
S(ω), Ŝ(ω), and R(ω).

Solution: By Parseval’s theorem,

N+p∑
n=p+1

(yn − ŷn)2 =
1

2π

∫ π

−π

∣∣∣Y (ω)− Ŷ (ω)
∣∣∣2 dω

=
1

π

∫ π

0

∣∣∣S(ω)− Ŝ(ω)
∣∣∣2 |1−R(ω)|2 dω

(b) (1 point) Usually, the quantization noise added in one time step, qn = ŷn − yn, is uncorrelated
with the quantization noise added in any other time step, thus qn is white noise, with some average
power σ2

q . Under the assumption that qn is white noise with power σ2
q , what is the power spectrum

of ŝn − sn?

Solution: If we can assume that

E

[∣∣∣Ŷ (ω)− Y (ω)
∣∣∣2] = σ2

q ,

then

E

[∣∣∣Ŝ(ω)− S(ω)
∣∣∣2] =

σ2
q

|1−R(ω)|2
.

(c) (1 point) For noise shaping, a reasonable set of principles might include:

1. Near a spectral pole of S(ω), it’s OK to have louder noise, because the noise will be masked
by the high energy of S(ω), thus the perceptual weighting |1−R(ω)|2 can be smaller at these
frequencies, perhaps something like

1 ≥ |1−R(ω)|2 ≥ 1

|S(ω)|2
if ω ≈ ωk,

where ωk is one of the spectral peaks of S(ω).

2. The perceptual weighting should be constant at frequencies far from any spectral pole, thus

|1−R(ω)|2 ≈ 1 if |ω − ωk| is large

Principle #2 is satisfied if 1 − R(ω) is an all-pass filter, i.e., its zeros have the same frequencies
as its poles. Principle #1 is satisfied if the zeros and poles both have the frequencies of the LPC
predictor, 1 − PA(z) = 1 −

∑p
k=1 akz

−k, and if the bandwidths of the poles are larger than the
bandwidths of the zeros. To see that this is the case, consider the all-pass filter

1−R(z) =
1− p1z−1

1− ap1z−1
, (4)

where p1 = e−σ1+jω1 , σ1 > 0 is the (real-valued) half-bandwidth of the pole (measured in radi-
ans/sample), and a is some real constant in the range 0 ≤ a < 1. Show that |1 − R(ejω1)| < 1,
where |1−R(ejω1)| < 1 is the magnitude response of the all-pass filter at the frequency ω = ω1.
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Solution:

|1−R(ejω1)| =
∣∣∣∣ 1− p1e−jω1

1− ap1e−jω1

∣∣∣∣
=

∣∣∣∣ 1− e−σ1

1− ae−σ1

∣∣∣∣
Since 0 < a < 1, 0 < ae−σ1 < e−σ1 < 1, (1−ae−σ1) > (1−e−σ1), and therefore |1−R(ejω1)| < 1.

(d) (1 point) Suppose that a speech signal has pole frequencies that are measured in radians/sample
as ωk, for 1 ≤ k ≤ p, and corresponding bandwidths of 2σk. (Assume that these are arranged in
complex conjugate pairs, e.g., ωp+1−k = −ωk, and σp+1−k = σk). The LPC polynomial is therefore

1− PA(z) = 1−
p∑
k=1

akz
−k =

p∏
i=1

(1− piz−1),

where pi = e−σi+jωi . Eq. (21) in the article suggest using a perceptual weighting filter that has
1− PA(z) in the numerator, and the following denominator:

1−
p∑
k=1

αkakz
−k, (5)

where 0 ≤ α ≤ 1. Show that Eq. (5 has roots that have the same frequencies (ωi) as 1−PA(z), and
that its bandwidths have been increased to σi − lnα.

Solution:

1−
p∑
k=1

αkakz
−k =

p∏
i=1

(1− αpiz−1),

The roots of this polynomial are
αpi = elnα−σi+jωi ,

which has a center frequency of σi, and a bandwidth of 2(σi − lnα).
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