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1. Equation (4) in the article gives a formula for the prediction sum-squared error (a.k.a. the energy of the
prediction residual) of an (m — 1)-tap linear prediction. To see why this is the case, let’s explore the
origin of some of the equations in this section.

(a) (1 point) Define €, in the following way:
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and a; ° is the kM coefficient of an order-m linear predictor. Solve for ey in terms of the
c a,,

coefficients a{™

and the speech signal s,,.
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(b) (1 point) Consider setting — (m 7 = 0 simultaneously for all & € {1,...,m}; this results in m linear

equations in terms of s, and ai = Convert these m linear equations into a single matrix equation
in terms of the vector d@,,_1 = [agmfl)7 . ,a&}f”*”]T, the vector ¢,,—1 = [¢(0,1),...,6(0,m — 1)]T,
and the matrix ®,,,_1 defined as
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Solution:
(I)m—lam—l = Cm—1

(¢) (1 point) Notice that the equation % = 0 can be written as
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Eq. is called the orthogonality condition. It says that the coefficient aém_l) that minimizes

€n 1S the one that eliminates all correlation between dﬁ"‘” (the prediction residual) and s,_k

(the predictor). Use the orthogonality condition to write €, as an affine function of the coefficients
al(m_l), where the coefficients in the linear function are the covariance terms ¢(i, 7). If your equation

has any terms that are quadratic in agm_l), then you haven’t simplified it far enough, keep going.
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(d) (1 point) The covariance LPC method solves the equation ®a@ = ¢ in three steps. First, it com-

putes the Cholesky decomposition ® = LL”, where L is a lower-triangular matrix. The Cholesky
decomposition is an O{p?®} operation. Second, it solves for the vector ¢ in the equation Lg = ¢; this
is an O{p?} operation. Third, it solves for @ either directly, by solving the equation § = LT @, or
indirectly, using the “known relation between the partial correlations and the predictor coefficients”
that is named but not described in the article; in either case, this is an O{p?} operation.

The part of all this that’s interesting to us is that, if we define the order-m equations as ®,, 1 =
Ly 1LY | Ly 1Gm—1=Cn_1,and ¢,—1 = LT @, _1, then we get that

m—1
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Use Eq. to re-write your solution to part (c) in terms of the coefficients g;.

Digression: here is an observation that is not necessary to solve this problem, but that might help
you to deepen your understanding of LPC. In the Cholesky decomposition ® = LL”, the m*™ row
of L only depends on the first m rows and columns of ®, therefore L,, 1 is a submatrix of L,,
Similarly, in the equation L§ = &, the m' coefficient, ¢,,, depends only on the first m rows of L,
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and the first m elements of ¢, therefore the vector ¢,,_1 is a subvector of ¢,,. The same is not true
of the equation LT'q,, = &@,,. The i*" predictor coefficient of an order-m predictor, is therefore not
the same as the i*" coefficient of an order-p predictor:

al(_m) 7& agp) ;

but the partial correlation coefficient ¢;/¢; is the same for any order, m or p, as long as m > i and

D>t
Solution:
m—1 m—1
Z q'iZ = 651—16771—1 = Z aém_l)qs(ov k)
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2. (1 point) Suppose that d,, is the LPC residual, and wv,, is the pitch prediction residual, thus
Up = dn - Bldn—lw-&-l - ﬂan—M - 63dn—M—1 (3)

If d,, were perfectly periodic with a period of M, then it would be possible to set v, = 0 (after the first
pitch period) by simply choosing 81 = 0, 82 = 1, 83 = 0. The reason Eq. contains three delay terms,
instead of just one, is that the pitch period might not be an integer.

Suppose that d,, is perfectly periodic, but with a period 7 that is not an integer. In this case, the ideal
pitch predictor should be Py(e?“) = 7“7 in the range —7 < w < 7. What is the inverse transform,
paln], of this pitch predictor? What would be reasonable values to choose for M, 51, 32, and B3?

Solution:

= sinc (w(n — 7))
A reasonable choice for M would be the integer nearest to 7, and the coefficients could be set to

f1 = sinc (7(M —1—171))
B2 = sinc (7(M — 7))
B3 = sinc (n(M + 1 —171))

3. The idea of perceptual noise shaping is to shape the speech signal, producing Y (w) = (1 — R(w))S(w),
prior to quantizing it. Quantization generates a synthetic output, §,, in order to minimize

N+p N+p
€= Z qi = Z (yn - gn)27
n=p+1 n=p+1
where
N 1 ~
Y(w) = m@(w)
() = TV

Page 3



(a) (1 point) Use Parseval’s theorem to express e as an integral, over frequency, of some function of

S(w), S(w), and R(w).

Solution: By Parseval’s theorem,
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(b) (1 point) Usually, the quantization noise added in one time step, ¢, = 9n — Yn, is uncorrelated
with the quantization noise added in any other time step, thus ¢, is white noise, with some average
power crg. Under the assumption that g,, is white noise with power og, what is the power spectrum
of §, — 8,7

Solution: If we can assume that

then

$(w) - S(W)ﬂ - A

(¢) (1 point) For noise shaping, a reasonable set of principles might include:

1. Near a spectral pole of S(w), it’s OK to have louder noise, because the noise will be masked
by the high energy of S(w), thus the perceptual weighting |1 — R(w)|? can be smaller at these
frequencies, perhaps something like

.
1 Z |1—R(W)|2Z W lfw%UJk,

where wy, is one of the spectral peaks of S(w).
2. The perceptual weighting should be constant at frequencies far from any spectral pole, thus

11— R(w)|* = 1if |w — wy| is large

Principle #2 is satisfied if 1 — R(w) is an all-pass filter, i.e., its zeros have the same frequencies
as its poles. Principle #1 is satisfied if the zeros and poles both have the frequencies of the LPC
predictor, 1 — P4(z) = 1 — > ¥_, axz~", and if the bandwidths of the poles are larger than the
bandwidths of the zeros. To see that this is the case, consider the all-pass filter

1 —plz_l
1-— R(Z) = 71 — ap12717

(4)

where p; = e"911%1 g > 0 is the (real-valued) half-bandwidth of the pole (measured in radi-
ans/sample), and a is some real constant in the range 0 < a < 1. Show that |1 — R(e/“1)| < 1,
where |1 — R(e/“1)| < 1 is the magnitude response of the all-pass filter at the frequency w = w;.
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Solution:

1= R(en)| = | L Pe ™
1 —apie~ivr

1—e™1

B ‘ 1—ae 1

Since0 <a<1,0<ae " <e 7' <1, (l—ae ) > (1—e~°1), and therefore |1 —R(e/*1)| < 1.

(d) (1 point) Suppose that a speech signal has pole frequencies that are measured in radians/sample
as wg, for 1 < k < p, and corresponding bandwidths of 20. (Assume that these are arranged in

complex conjugate pairs, e.g., wp+1—k = —Wk, and op41_ = 0x). The LPC polynomial is therefore
P P
1—=Py(z)=1- Zakz_k = H(l —piz7 Y,
k=1 i=1

where p; = e~%TJ%i_ Eq. (21) in the article suggest using a perceptual weighting filter that has
1 — P4(z) in the numerator, and the following denominator:

P
1-— Zakaszk, (5)
k=1

where 0 < a < 1. Show that Eq. (5has roots that have the same frequencies (w;) as 1 — P4(z), and
that its bandwidths have been increased to o; — In .

Solution:
p

»
1— Zakakz_k = H(l —apiz™h),
k=1

i=1

The roots of this polynomial are
_ eln a—o;+jw;

ap;

)

which has a center frequency of o;, and a bandwidth of 2(¢; — In ).
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