ECE 537 Fundamentals of Speech Processing Problem Set 5

UNIVERSITY OF ILLINOIS
Department of Electrical and Computer Engineering

Assigned: Monday, 10/3/2022; Due: Monday, 10/10/2022
Reading: Atal, "Predictive Coding of Speech at Low Bit Rates," 1982

1. Equation (4) in the article gives a formula for the prediction sum-squared error (a.k.a. the energy of the prediction residual) of an ($m-1$)-tap linear prediction. To see why this is the case, let's explore the origin of some of the equations in this section.
(a) (1 point) Define ϵ_{m} in the following way:

$$
\epsilon_{m}=\sum_{n=p+1}^{N+p}\left(d_{n}^{(m-1)}\right)^{2},
$$

where

$$
d_{n}^{(m)}=s_{n}-\sum_{k=1}^{m-1} a_{k}^{(m-1)} s_{n-k},
$$

and $a_{k}^{(m)}$ is the $k^{\text {th }}$ coefficient of an order- m linear predictor. Solve for $\frac{\partial \epsilon_{m}}{\partial a_{k}^{(m-1)}}$ in terms of the coefficients $a_{i}^{(m)}$ and the speech signal s_{n}.

Solution:

$$
\frac{\partial \epsilon_{m}}{\partial a_{k}^{(m-1)}}=-2 \sum_{n=p+1}^{N+p} s_{n} s_{n-k}+2 \sum_{n=p+1}^{N+p} \sum_{i=1}^{m-1} a_{i}^{(m-1)} s_{n-i} s_{n-k}
$$

(b) (1 point) Consider setting $\frac{\partial \epsilon_{m}}{\partial a_{k}^{(m-1)}}=0$ simultaneously for all $k \in\{1, \ldots, m\}$; this results in m linear equations in terms of s_{n} and $a_{i}^{(m-1)}$. Convert these m linear equations into a single matrix equation in terms of the vector $\vec{a}_{m-1}=\left[a_{1}^{(m-1)}, \ldots, a_{m}^{(m-1)}\right]^{T}$, the vector $\vec{c}_{m-1}=[\phi(0,1), \ldots, \phi(0, m-1)]^{T}$, and the matrix Φ_{m-1} defined as

$$
\Phi_{m-1}=\left[\begin{array}{ccc}
\phi(1,1) & \cdots & \phi(1, m-1) \\
\vdots & \ddots & \vdots \\
\phi(m-1,1) & \cdots & \phi(m-1, m-1)
\end{array}\right],
$$

where

$$
\phi(i, j)=\sum_{n=p+1}^{N+p} s_{n-i} s_{n-j}
$$

Solution:

$$
\Phi_{m-1} \vec{a}_{m-1}=\vec{c}_{m-1}
$$

(c) (1 point) Notice that the equation $\frac{\partial \epsilon_{m}}{\partial a_{k}^{(m-1)}}=0$ can be written as

$$
\begin{equation*}
\sum_{n=p+1}^{N+p} d_{n}^{(m-1)} s_{n-k}=0 \tag{1}
\end{equation*}
$$

Eq. 11 is called the orthogonality condition. It says that the coefficient $a_{k}^{(m-1)}$ that minimizes ϵ_{m} is the one that eliminates all correlation between $d_{n}^{(m-1)}$ (the prediction residual) and s_{n-k} (the predictor). Use the orthogonality condition to write ϵ_{m} as an affine function of the coefficients $a_{i}^{(m-1)}$, where the coefficients in the linear function are the covariance terms $\phi(i, j)$. If your equation has any terms that are quadratic in $a_{i}^{(m-1)}$, then you haven't simplified it far enough, keep going.

Solution:

$$
\begin{aligned}
\epsilon_{m} & =\sum_{n=p+1}^{N+p}\left(d_{n}^{(m-1)}\right)^{2} \\
& =\sum_{n=p+1}^{N+p} d_{n}^{(m)}\left(s_{n}-\sum_{k=1}^{m-1} a_{k}^{(m-1)} s_{n-k}\right) \\
& =\sum_{n=p+1}^{N+p} d_{n}^{(m-1)} s_{n} \\
& =\sum_{n=p+1}^{N+p}\left(s_{n}-\sum_{k=1}^{m-1} a_{k}^{(m-1)} s_{n-k}\right) s_{n} \\
& =\phi(0,0)-\sum_{k=1}^{m-1} a_{k}^{(m-1)} \phi(0, k)
\end{aligned}
$$

(d) (1 point) The covariance LPC method solves the equation $\Phi \vec{a}=\vec{c}$ in three steps. First, it computes the Cholesky decomposition $\Phi=L L^{T}$, where L is a lower-triangular matrix. The Cholesky decomposition is an $\mathcal{O}\left\{p^{3}\right\}$ operation. Second, it solves for the vector \vec{q} in the equation $L \vec{q}=\vec{c}$; this is an $\mathcal{O}\left\{p^{2}\right\}$ operation. Third, it solves for \vec{a} either directly, by solving the equation $\vec{q}=L^{T} \vec{a}$, or indirectly, using the "known relation between the partial correlations and the predictor coefficients" that is named but not described in the article; in either case, this is an $\mathcal{O}\left\{p^{2}\right\}$ operation.
The part of all this that's interesting to us is that, if we define the order- m equations as $\Phi_{m-1}=$ $L_{m-1} L_{m-1}^{T}, L_{m-1} \vec{q}_{m-1}=\vec{c}_{m-1}$, and $\vec{q}_{m-1}=L_{m-1}^{T} \vec{a}_{m-1}$, then we get that

$$
\begin{equation*}
\sum_{i=1}^{m-1} q_{i}^{2}=\vec{q}_{m-1}^{T} \vec{q}_{m-1}=\vec{a}_{m-1}^{T} \Phi_{m-1} \vec{a}_{m-1}=\vec{a}_{m-1}^{T} \vec{c}_{m-1} \tag{2}
\end{equation*}
$$

Use Eq. (2) to re-write your solution to part (c) in terms of the coefficients q_{i}.
Digression: here is an observation that is not necessary to solve this problem, but that might help you to deepen your understanding of LPC. In the Cholesky decomposition $\Phi=L L^{T}$, the $m^{\text {th }}$ row of L only depends on the first m rows and columns of Φ, therefore L_{m-1} is a submatrix of L_{m}. Similarly, in the equation $L \vec{q}=\vec{c}$, the $m^{\text {th }}$ coefficient, q_{m}, depends only on the first m rows of L,
and the first m elements of \vec{c}, therefore the vector \vec{q}_{m-1} is a subvector of \vec{q}_{m}. The same is not true of the equation $L^{T} \vec{q}_{m}=\vec{a}_{m}$. The $i^{\text {th }}$ predictor coefficient of an order- m predictor, is therefore not the same as the $i^{\text {th }}$ coefficient of an order- p predictor:

$$
a_{i}^{(m)} \neq a_{i}^{(p)},
$$

but the partial correlation coefficient q_{i} / ϵ_{i} is the same for any order, m or p, as long as $m \geq i$ and $p \geq i$.

Solution:

$$
\sum_{i=1}^{m-1} q_{i}^{2}=\vec{a}_{m-1}^{T} \vec{c}_{m-1}=\sum_{k=1}^{m-1} a_{k}^{(m-1)} \phi(0, k)
$$

Therefore

$$
\epsilon_{m}=\phi(0,0)-\sum_{i=1}^{m-1} q_{i}^{2}
$$

2. (1 point) Suppose that d_{n} is the LPC residual, and v_{n} is the pitch prediction residual, thus

$$
\begin{equation*}
v_{n}=d_{n}-\beta_{1} d_{n-M+1}-\beta_{2} d_{n-M}-\beta_{3} d_{n-M-1} \tag{3}
\end{equation*}
$$

If d_{n} were perfectly periodic with a period of M, then it would be possible to set $v_{n}=0$ (after the first pitch period) by simply choosing $\beta_{1}=0, \beta_{2}=1, \beta_{3}=0$. The reason Eq. (3) contains three delay terms, instead of just one, is that the pitch period might not be an integer.
Suppose that d_{n} is perfectly periodic, but with a period τ that is not an integer. In this case, the ideal pitch predictor should be $P_{d}\left(e^{j \omega}\right)=e^{-j \omega \tau}$ in the range $-\pi<\omega<\pi$. What is the inverse transform, $p_{d}[n]$, of this pitch predictor? What would be reasonable values to choose for M, β_{1}, β_{2}, and β_{3} ?

Solution:

$$
\begin{aligned}
p_{d}[n] & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{j \omega(n-\tau)} d \omega \\
& =\operatorname{sinc}(\pi(n-\tau))
\end{aligned}
$$

A reasonable choice for M would be the integer nearest to τ, and the coefficients could be set to

$$
\begin{aligned}
& \beta_{1}=\operatorname{sinc}(\pi(M-1-\tau)) \\
& \beta_{2}=\operatorname{sinc}(\pi(M-\tau)) \\
& \beta_{3}=\operatorname{sinc}(\pi(M+1-\tau))
\end{aligned}
$$

3. The idea of perceptual noise shaping is to shape the speech signal, producing $Y(\omega)=(1-R(\omega)) S(\omega)$, prior to quantizing it. Quantization generates a synthetic output, \hat{q}_{n}, in order to minimize

$$
\epsilon=\sum_{n=p+1}^{N+p} q_{n}^{2}=\sum_{n=p+1}^{N+p}\left(y_{n}-\hat{y}_{n}\right)^{2}
$$

where

$$
\begin{aligned}
\hat{Y}(\omega) & =\frac{1}{1-P_{A}(\omega)} \hat{Q}(\omega) \\
\hat{S}(\omega) & =\frac{1}{1-R(\omega)} \hat{Y}(\omega)
\end{aligned}
$$

(a) (1 point) Use Parseval's theorem to express ϵ as an integral, over frequency, of some function of $S(\omega), \hat{S}(\omega)$, and $R(\omega)$.

Solution: By Parseval's theorem,

$$
\begin{aligned}
\sum_{n=p+1}^{N+p}\left(y_{n}-\hat{y}_{n}\right)^{2} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi}|Y(\omega)-\hat{Y}(\omega)|^{2} d \omega \\
& =\frac{1}{\pi} \int_{0}^{\pi}|S(\omega)-\hat{S}(\omega)|^{2}|1-R(\omega)|^{2} d \omega
\end{aligned}
$$

(b) (1 point) Usually, the quantization noise added in one time step, $q_{n}=\hat{y}_{n}-y_{n}$, is uncorrelated with the quantization noise added in any other time step, thus q_{n} is white noise, with some average power σ_{q}^{2}. Under the assumption that q_{n} is white noise with power σ_{q}^{2}, what is the power spectrum of $\hat{s}_{n}-s_{n}$?

Solution: If we can assume that

$$
E\left[|\hat{Y}(\omega)-Y(\omega)|^{2}\right]=\sigma_{q}^{2}
$$

then

$$
E\left[|\hat{S}(\omega)-S(\omega)|^{2}\right]=\frac{\sigma_{q}^{2}}{|1-R(\omega)|^{2}}
$$

(c) (1 point) For noise shaping, a reasonable set of principles might include:

1. Near a spectral pole of $S(\omega)$, it's OK to have louder noise, because the noise will be masked by the high energy of $S(\omega)$, thus the perceptual weighting $|1-R(\omega)|^{2}$ can be smaller at these frequencies, perhaps something like

$$
1 \geq|1-R(\omega)|^{2} \geq \frac{1}{|S(\omega)|^{2}} \text { if } \omega \approx \omega_{k}
$$

where ω_{k} is one of the spectral peaks of $S(\omega)$.
2. The perceptual weighting should be constant at frequencies far from any spectral pole, thus

$$
|1-R(\omega)|^{2} \approx 1 \text { if }\left|\omega-\omega_{k}\right| \text { is large }
$$

Principle $\# 2$ is satisfied if $1-R(\omega)$ is an all-pass filter, i.e., its zeros have the same frequencies as its poles. Principle $\# 1$ is satisfied if the zeros and poles both have the frequencies of the LPC predictor, $1-P_{A}(z)=1-\sum_{k=1}^{p} a_{k} z^{-k}$, and if the bandwidths of the poles are larger than the bandwidths of the zeros. To see that this is the case, consider the all-pass filter

$$
\begin{equation*}
1-R(z)=\frac{1-p_{1} z^{-1}}{1-a p_{1} z^{-1}} \tag{4}
\end{equation*}
$$

where $p_{1}=e^{-\sigma_{1}+j \omega_{1}}, \sigma_{1}>0$ is the (real-valued) half-bandwidth of the pole (measured in radians/sample), and a is some real constant in the range $0 \leq a<1$. Show that $\left|1-R\left(e^{j \omega_{1}}\right)\right|<1$, where $\left|1-R\left(e^{j \omega_{1}}\right)\right|<1$ is the magnitude response of the all-pass filter at the frequency $\omega=\omega_{1}$.

Solution:

$$
\begin{aligned}
\left|1-R\left(e^{j \omega_{1}}\right)\right| & =\left|\frac{1-p_{1} e^{-j \omega_{1}}}{1-a p_{1} e^{-j \omega_{1}}}\right| \\
& =\left|\frac{1-e^{-\sigma_{1}}}{1-a e^{-\sigma_{1}}}\right|
\end{aligned}
$$

Since $0<a<1,0<a e^{-\sigma_{1}}<e^{-\sigma_{1}}<1,\left(1-a e^{-\sigma_{1}}\right)>\left(1-e^{-\sigma_{1}}\right)$, and therefore $\left|1-R\left(e^{j \omega_{1}}\right)\right|<1$.
(d) (1 point) Suppose that a speech signal has pole frequencies that are measured in radians/sample as ω_{k}, for $1 \leq k \leq p$, and corresponding bandwidths of $2 \sigma_{k}$. (Assume that these are arranged in complex conjugate pairs, e.g., $\omega_{p+1-k}=-\omega_{k}$, and $\sigma_{p+1-k}=\sigma_{k}$). The LPC polynomial is therefore

$$
1-P_{A}(z)=1-\sum_{k=1}^{p} a_{k} z^{-k}=\prod_{i=1}^{p}\left(1-p_{i} z^{-1}\right)
$$

where $p_{i}=e^{-\sigma_{i}+j \omega_{i}}$. Eq. (21) in the article suggest using a perceptual weighting filter that has $1-P_{A}(z)$ in the numerator, and the following denominator:

$$
\begin{equation*}
1-\sum_{k=1}^{p} \alpha^{k} a_{k} z^{-k} \tag{5}
\end{equation*}
$$

where $0 \leq \alpha \leq 1$. Show that Eq. (5has roots that have the same frequencies $\left(\omega_{i}\right)$ as $1-P_{A}(z)$, and that its bandwidths have been increased to $\sigma_{i}-\ln \alpha$.

Solution:

$$
1-\sum_{k=1}^{p} \alpha^{k} a_{k} z^{-k}=\prod_{i=1}^{p}\left(1-\alpha p_{i} z^{-1}\right)
$$

The roots of this polynomial are

$$
\alpha p_{i}=e^{\ln \alpha-\sigma_{i}+j \omega_{i}}
$$

which has a center frequency of σ_{i}, and a bandwidth of $2\left(\sigma_{i}-\ln \alpha\right)$.

