ECE 537 Fundamentals of Speech Processing Problem Set 3

UNIVERSITY OF ILLINOIS
Department of Electrical and Computer Engineering

Assigned: Monday, 9/5/2022; Due: Monday, 9/19/2022
Reading: Osamu Fujimura, "Analysis of Nasal Consonants," 1962

All parts of this problem set will use the Laplace transform analysis of the one-dimensional wave equation, as did Fujimura's paper. Since your undergraduate courses on waves and DSP might not have covered that analysis, it is reviewed here; for more extensive coverage, see any textbook on acoustics or electromagnetics. The two-sided Laplace transform of a signal $p(t)$ is given by

$$
\begin{equation*}
P(s)=\int_{-\infty}^{\infty} p(t) e^{-s t} d t \tag{1}
\end{equation*}
$$

Eq. (11) is probably a bit different from anything you've seen before (e.g., ECE 210 teaches the one-sided Laplace transform instead of this two-sided Laplace transform), and that's because the integral in Eq. (1) fails to converge for a lot of interesting signals. For example, it fails to converge for $p(t)=\cos (\omega t)$. However, it converges successfully for any finite-duration, finite-amplitude $p(t)$, so it works for real-world signals. For such signals, its inverse is just the inverse continuous-time Fourier transform:

$$
\begin{equation*}
p(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} P(j \omega) e^{j \omega t} d \omega \tag{2}
\end{equation*}
$$

The Fujimura article assumes acoustic waves to be a relationship between air pressure $p(x, t)$ and volume velocity $u(x, t)$, where x is position and t is time. Volume velocity is defined to be the air particle velocity multiplied by the cross-sectional area of the wave front, so it has units of $\left[\frac{m}{s}\right] \times\left[m^{2}\right]=\left[\frac{m^{3}}{s}\right]$. Volume velocity is more useful than air particle velocity if you're studying wave propagation in a tube with varying cross-sectional area, like the vocal tract, because volume velocity has an intuitive built-in normalization for variations in the cross-sectional area: if you have a constant $0.001 \mathrm{~m}^{3} / \mathrm{s}$ of air entering the wide end of a tube, you'd better have a constant $0.001 \mathrm{~m}^{3} / \mathrm{s}$ coming out the small end, regardless of what the two areas are!

Like any other wave equation (electromagnetic, sound, water waves, waves on a violin string, or waves on a Slinky), the one-dimensional acoustic wave equation is solved by the addition of a rightward-traveling wave, $r(t-x / c)$, and a leftward-traveling wave, $l(t+x / c)$, where c is the speed of the wave. For the acoustic wave, the ratio of pressure to volume velocity is $\frac{\rho c}{A(x)}$, where ρ is the density of air and $A(x)$ is the cross-sectional area of the vocal tract at position x, thus:

$$
\begin{align*}
& p(x, t)=r\left(t-\frac{x}{c}\right)+l\left(t+\frac{x}{c}\right) \tag{3}\\
& u(x, t)=\frac{A(x)}{\rho c}\left(r\left(t-\frac{x}{c}\right)-l\left(t+\frac{x}{c}\right)\right) \tag{4}
\end{align*}
$$

If you take the Laplace transform of Eqs. (3) and (4), you get

$$
\begin{align*}
& P(x, t)=R(s) e^{-s x / c}+L(s) e^{s x / c} \tag{5}\\
& U(x, t)=\frac{A(x)}{\rho c}\left(R(s) e^{-s x / c}-L(s) e^{s x / c}\right) \tag{6}
\end{align*}
$$

The Fujimura article is justly famous for summarizing all of the complicated details of the mouth, nose, and pharynx by three susceptance functions, $B_{m}(s), B_{n}(s)$, and $B_{p}(s)$. These are defined to be

$$
\begin{align*}
B_{m}(s) & =\frac{U_{m}(0, s)}{P_{m}(0, s)}=\frac{A_{m}}{\rho c}\left(\frac{R_{m}(s)-L_{m}(s)}{R_{m}(s)+L_{m}(s)}\right) \tag{7}\\
B_{n}(s) & =\frac{U_{n}(0, s)}{P_{n}(0, s)}=\frac{A_{n}}{\rho c}\left(\frac{R_{n}(s)-L_{n}(s)}{R_{n}(s)+L_{n}(s)}\right) \tag{8}\\
B_{p}(s) & =\frac{U_{p}(0, s)}{P_{p}(0, s)}=\frac{A_{p}}{\rho c}\left(\frac{R_{p}(s)-L_{p}(s)}{R_{p}(s)+L_{p}(s)}\right) \tag{9}
\end{align*}
$$

where $U_{m}(x, s), P_{m}(x, s), A_{m}, R_{m}(s)$, and $L_{m}(s)$ are the volume velocity, pressure, area, rightward wave, and leftward wave in the mouth cavity, respectively; likewise n for nose and p for pharynx. Eqs. (749) assume that the velum (the juncture between mouth, nose, and pharynx) occurs at position $x=0$, and that the position x can be imagined to increase as one moves away from the velum in any direction. In particular, if $U_{m}(x, s), U_{n}(x, s)$, and $U_{p}(x, s)$ all describe air velocity away from the velum, then resonance occurs if, for any air pressure shared by all three cavities $\left(P_{m}(0, s)=P_{n}(0, s)=P_{p}(0, s)\right)$, the excess volume velocity coming out of two cavities is completely compensated by volume velocity going into the third cavity $\left(U_{m}(0, s)+U_{n}(0, s)+U_{p}(0, s)=0\right)$.

Many Laplace-domain functions can be most concisely written in terms of hyperbolic functions. The basic hyperbolic functions are:

$$
\begin{align*}
\sinh (x) & =\frac{1}{2}\left(e^{x}-e^{-x}\right) \tag{10}\\
\cosh (x) & =\frac{1}{2}\left(e^{x}+e^{-x}\right) \tag{11}\\
\tanh (x) & =\frac{\sinh (x)}{\cosh (x)} \tag{12}\\
\operatorname{coth}(x) & =\frac{\cosh (x)}{\sinh (x)} \tag{13}
\end{align*}
$$

The hyperbolic functions are related to trigonometric functions by:

$$
\begin{align*}
\sinh (j x) & =j \sin (x) \tag{14}\\
\cosh (j x) & =\cos (x) \tag{15}
\end{align*}
$$

1. (1 point) When viewed from the velum, the nasal cavity is a tube that's open at the other end. Since the cross-sectional area of the room is much larger than the cross-sectional area of your nose, the air pressure in the room is basically zero, regardless of how much air you blow out from your nose. In other words,

$$
\begin{equation*}
P_{n}\left(d_{n}, s\right)=0 \tag{16}
\end{equation*}
$$

where d_{n} is the length of the nasal tube. Notice that Eq. 16 can be interpreted as a constraint on the relationship between $L_{n}(s)$ and $R_{n}(s)$. Impose that constraint, solve for the resulting value of $B_{n}(s)$, and express your answer in terms of the hyperbolic functions in Eqs. 10.13 .

Solution:

$$
B_{n}(s)=\frac{A_{n}}{\rho c} \operatorname{coth}\left(d_{n} s / c\right)
$$

2. (1 point) When viewed from the velum, the pharynx is a tube that's closed at the other end. Since the cross-sectional area of the glottis is much smaller than the cross-sectional area of your pharynx, there's
basically no way for a standing wave in your pharynx to push air back through the glottis. In other words,

$$
\begin{equation*}
U_{p}\left(d_{p}, s\right)=0 \tag{17}
\end{equation*}
$$

where d_{p} is the length of the pharynx. Notice that Eq. 17) can be interpreted as a constraint on the relationship between $L_{p}(s)$ and $R_{p}(s)$. Impose that constraint, solve for the resulting value of $B_{p}(s)$, and express your answer in terms of the hyperbolic functions in Eqs. 10.13.).

Solution:

$$
B_{p}(s)=\frac{A_{p}}{\rho c} \tanh \left(d_{p} s / c\right)
$$

3. The Fujimura article summarizes the nose and pharynx with an "internal" susceptance, $B_{i}(s)=B_{p}(s)+$ $B_{n}(s)$. The form of the internal susceptance is generally pretty complicated, so Fujimura measured it empirically. A not-quite-correct but useful approximation can be obtained, however, if we assume that $A_{n}=A_{p}$ and $d_{n}=d_{p}$.
(a) (1 point) Under the assumption that $A_{n}=A_{p}$ and $d_{n}=d_{p}$, find $B_{i}(s)$. Hint: if you've done problems 1 and 2 correctly, this problem should be made trivially easy by the following trig identity:

$$
\begin{equation*}
\tanh (x)+\operatorname{coth}(x)=2 \operatorname{coth}(2 x) \tag{18}
\end{equation*}
$$

If Eq. 18 doesn't make this problem easy, then go back and check your answers to problems 1 and 2. If Eq. (18) makes this problem easy, then use the definitions in Eqs. 10,13) to verify the truth of Eq. 18.

Solution: Setting $A_{n}=A_{p}$ and $d_{n}=d_{p}$, and using the results of problems 1 and 2 , we have

$$
\begin{aligned}
B_{n}(s)+B_{p}(s) & =\frac{A_{n}}{\rho c}\left(\operatorname{coth}\left(\frac{s d_{n}}{c}\right)+\tanh \left(\frac{s d_{n}}{c}\right)\right) \\
& =\frac{2 A_{n}}{\rho c} \operatorname{coth}\left(\frac{2 s d_{n}}{c}\right)
\end{aligned}
$$

To verify Eq. 18), we could write

$$
\begin{aligned}
\tanh (x)+\operatorname{coth}(x) & =\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}+\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}} \\
& =\frac{\left(e^{x}-e^{-x}\right)^{2}+\left(e^{x}+e^{-x}\right)^{2}}{\left(e^{x}+e^{-x}\right)\left(e^{x}-e^{-x}\right)} \\
& =2 \frac{e^{2 x}+e^{-2 x}}{e^{2 x}-e^{-2 x}}=2 \operatorname{coth}(2 x)
\end{aligned}
$$

(b) (1 point) Evaluate your answer to part (a) at the frequency $s=j 2 \pi f$. Assuming that the total pharynx + nose has a length of about $d_{n}+d_{p}=24.0 \mathrm{~cm}$, and that the speed of sound in air at body temperature is $354 \frac{\mathrm{~m}}{\mathrm{~s}}$, find the resonant frequencies for the nasal consonant $/ \mathrm{y} /$. Compare your result to the measurements given for KS on page 1869 of the article.

Solution: Plugging in $s=j 2 \pi f$, we gt that

$$
B_{i}(j 2 \pi f)=-j \frac{2 A_{n}}{\rho c} \cot \left(\frac{2 \pi f\left(d_{n}+d_{p}\right)}{c}\right)
$$

which has zeros at

$$
F_{k}=\frac{c}{4\left(d_{n}+d_{p}\right)}+\frac{c}{2\left(d_{n}+d_{p}\right)}(k-1)=\{369,1110,1840,2580\}
$$

The first two resonant frequencies are a little higher than those reported for $\mathrm{KS}(350 \mathrm{~Hz}$ and $1050 \mathrm{~Hz})$. The next two are a bit lower than the reported measurements $(1900 \mathrm{~Hz}$ and 2750 Hz$)$, probably because the approximations $A_{n}=A_{p}$ and $d_{n}=d_{p}$ are not exactly correct.
4. Suppose that the mouth, for an $/ \mathrm{n} /$, is about 5 cm long, from the velum to the tongue tip closure.
(a) (1 point) What is the frequency of the corresponding antiformant?

Solution: The mouth susceptance is

$$
B_{m}(s)=\frac{A_{m}}{\rho c} \tanh \left(d_{m} s / c\right)
$$

which has singularities at

$$
F_{l}=\frac{c}{4 d_{m}}+\frac{c}{2 d_{m}}(l-1)
$$

The first such singularity is $354 / 4 \times 0.05=1770 \mathrm{~Hz}$.
(b) (1 point) By setting $B_{i}(s)+B_{m}(s)=0$, it is possible to calculate the formant frequencies of the $/ \mathrm{n} /$. Suppose that $B_{i}(s)$ is given by the value you calculated in problem 3. The exact values of the formants of $/ \mathrm{n} /$ could be calculated using the method shown in Figure 2, if we knew the values of A_{m} and A_{n}. Since we don't know the values of A_{m} and A_{n}, use the fact that each formant is somewhere between one of the singularities of $B_{i}(s)$ and one of the zeros of $B_{i}(s)$, as shown in Figure 2, to specify lower and upper bounds on the possible frequencies of the first five formants of /n/.

Solution: The singularities of $B_{i}(s)$ are at the frequencies

$$
\frac{c}{2\left(d_{n}+d_{p}\right)} k=\{729,1460,2190,2900\}
$$

The zeros of $B_{i}(s)$ are

$$
\frac{c}{4\left(d_{n}+d_{p}\right)}+\frac{c}{2\left(d_{n}+d_{p}\right)}(k-1)=\{369,1110,1840,2580\}
$$

As shown in Figure 2, the first zeros of $B_{i}(s)+B_{m}(s)$ are between the zeros of $B_{s}(s)$ and the next lower singularity. The singularity in $B_{m}(s)$ splits the third zero in two; the fourth and fifth zeros of $B_{i}(s)+B_{m}(s)$ are between the third and fourth zeros of $B_{i}(s)$ and the next higher singularity. Thus

$$
\begin{aligned}
0 & <F_{1}<369 \\
729 & <F_{2}<1110 \\
1460 & <F_{3}<1840 \\
1840 & <F_{4}<2190 \\
2580 & <F_{5}<2580
\end{aligned}
$$

