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Reading: Osamu Fujimura, “Analysis of Nasal Consonants,” 1962

All parts of this problem set will use the Laplace transform analysis of the one-dimensional wave equation,
as did Fujimura’s paper. Since your undergraduate courses on waves and DSP might not have covered that
analysis, it is reviewed here; for more extensive coverage, see any textbook on acoustics or electromagnetics.
The two-sided Laplace transform of a signal p(t) is given by

P (s) =

∫ ∞
−∞

p(t)e−stdt (1)

Eq. (1) is probably a bit different from anything you’ve seen before (e.g., ECE 210 teaches the one-sided
Laplace transform instead of this two-sided Laplace transform), and that’s because the integral in Eq. (1)
fails to converge for a lot of interesting signals. For example, it fails to converge for p(t) = cos(ωt). However,
it converges successfully for any finite-duration, finite-amplitude p(t), so it works for real-world signals. For
such signals, its inverse is just the inverse continuous-time Fourier transform:

p(t) =
1

2π

∫ ∞
−∞

P (jω)ejωtdω (2)

The Fujimura article assumes acoustic waves to be a relationship between air pressure p(x, t) and volume
velocity u(x, t), where x is position and t is time. Volume velocity is defined to be the air particle velocity

multiplied by the cross-sectional area of the wave front, so it has units of
[
m
s

]
×
[
m2
]

=
[
m3

s

]
. Volume

velocity is more useful than air particle velocity if you’re studying wave propagation in a tube with varying
cross-sectional area, like the vocal tract, because volume velocity has an intuitive built-in normalization for
variations in the cross-sectional area: if you have a constant 0.001m3/s of air entering the wide end of a
tube, you’d better have a constant 0.001m3/s coming out the small end, regardless of what the two areas
are!

Like any other wave equation (electromagnetic, sound, water waves, waves on a violin string, or waves on
a Slinky), the one-dimensional acoustic wave equation is solved by the addition of a rightward-traveling wave,
r(t−x/c), and a leftward-traveling wave, l(t+x/c), where c is the speed of the wave. For the acoustic wave,
the ratio of pressure to volume velocity is ρc

A(x) , where ρ is the density of air and A(x) is the cross-sectional

area of the vocal tract at position x, thus:

p(x, t) = r
(
t− x

c

)
+ l
(
t+

x

c

)
(3)

u(x, t) =
A(x)

ρc

(
r
(
t− x

c

)
− l
(
t+

x

c

))
, (4)

If you take the Laplace transform of Eqs. (3) and (4), you get

P (x, t) = R(s)e−sx/c + L(s)esx/c (5)

U(x, t) =
A(x)

ρc

(
R(s)e−sx/c − L(s)esx/c

)
(6)
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The Fujimura article is justly famous for summarizing all of the complicated details of the mouth, nose, and
pharynx by three susceptance functions, Bm(s), Bn(s), and Bp(s). These are defined to be

Bm(s) =
Um(0, s)

Pm(0, s)
=
Am
ρc

(
Rm(s)− Lm(s)

Rm(s) + Lm(s)

)
(7)

Bn(s) =
Un(0, s)

Pn(0, s)
=
An
ρc

(
Rn(s)− Ln(s)

Rn(s) + Ln(s)

)
(8)

Bp(s) =
Up(0, s)

Pp(0, s)
=
Ap
ρc

(
Rp(s)− Lp(s)
Rp(s) + Lp(s)

)
, (9)

where Um(x, s), Pm(x, s), Am, Rm(s), and Lm(s) are the volume velocity, pressure, area, rightward wave,
and leftward wave in the mouth cavity, respectively; likewise n for nose and p for pharynx. Eqs. (7-9)
assume that the velum (the juncture between mouth, nose, and pharynx) occurs at position x = 0, and
that the position x can be imagined to increase as one moves away from the velum in any direction. In
particular, if Um(x, s), Un(x, s), and Up(x, s) all describe air velocity away from the velum, then resonance
occurs if, for any air pressure shared by all three cavities (Pm(0, s) = Pn(0, s) = Pp(0, s)), the excess volume
velocity coming out of two cavities is completely compensated by volume velocity going into the third cavity
(Um(0, s) + Un(0, s) + Up(0, s) = 0).

Many Laplace-domain functions can be most concisely written in terms of hyperbolic functions. The
basic hyperbolic functions are:

sinh(x) =
1

2

(
ex − e−x

)
(10)

cosh(x) =
1

2

(
ex + e−x

)
(11)

tanh(x) =
sinh(x)

cosh(x)
(12)

coth(x) =
cosh(x)

sinh(x)
(13)

The hyperbolic functions are related to trigonometric functions by:

sinh(jx) = j sin(x) (14)

cosh(jx) = cos(x) (15)

1. (1 point) When viewed from the velum, the nasal cavity is a tube that’s open at the other end. Since
the cross-sectional area of the room is much larger than the cross-sectional area of your nose, the air
pressure in the room is basically zero, regardless of how much air you blow out from your nose. In other
words,

Pn(dn, s) = 0, (16)

where dn is the length of the nasal tube. Notice that Eq. (16) can be interpreted as a constraint on the
relationship between Ln(s) and Rn(s). Impose that constraint, solve for the resulting value of Bn(s),
and express your answer in terms of the hyperbolic functions in Eqs. (10-13).

Solution:

Bn(s) =
An
ρc

coth(dns/c)

2. (1 point) When viewed from the velum, the pharynx is a tube that’s closed at the other end. Since the
cross-sectional area of the glottis is much smaller than the cross-sectional area of your pharynx, there’s
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basically no way for a standing wave in your pharynx to push air back through the glottis. In other
words,

Up(dp, s) = 0, (17)

where dp is the length of the pharynx. Notice that Eq. (17) can be interpreted as a constraint on the
relationship between Lp(s) and Rp(s). Impose that constraint, solve for the resulting value of Bp(s),
and express your answer in terms of the hyperbolic functions in Eqs. (10-13).

Solution:

Bp(s) =
Ap
ρc

tanh(dps/c)

3. The Fujimura article summarizes the nose and pharynx with an “internal” susceptance, Bi(s) = Bp(s)+
Bn(s). The form of the internal susceptance is generally pretty complicated, so Fujimura measured it
empirically. A not-quite-correct but useful approximation can be obtained, however, if we assume that
An = Ap and dn = dp.

(a) (1 point) Under the assumption that An = Ap and dn = dp, find Bi(s). Hint: if you’ve done
problems 1 and 2 correctly, this problem should be made trivially easy by the following trig identity:

tanh(x) + coth(x) = 2 coth(2x) (18)

If Eq. (18) doesn’t make this problem easy, then go back and check your answers to problems 1 and
2. If Eq. (18) makes this problem easy, then use the definitions in Eqs. (10-13) to verify the truth
of Eq. (18).

Solution: Setting An = Ap and dn = dp, and using the results of problems 1 and 2, we have

Bn(s) +Bp(s) =
An
ρc

(
coth

(
sdn
c

)
+ tanh

(
sdn
c

))
=

2An
ρc

coth

(
2sdn
c

)
To verify Eq. (18), we could write

tanh(x) + coth(x) =
ex − e−x

ex + e−x
+
ex + e−x

ex − e−x

=
(ex − e−x)2 + (ex + e−x)2

(ex + e−x)(ex − e−x)

= 2
e2x + e−2x

e2x − e−2x
= 2 coth(2x)

(b) (1 point) Evaluate your answer to part (a) at the frequency s = j2πf . Assuming that the total
pharynx + nose has a length of about dn + dp = 24.0cm, and that the speed of sound in air at
body temperature is 354ms , find the resonant frequencies for the nasal consonant /N/. Compare
your result to the measurements given for KS on page 1869 of the article.

Solution: Plugging in s = j2πf , we gt that

Bi(j2πf) = −j 2An
ρc

cot

(
2πf(dn + dp)

c

)
,
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which has zeros at

Fk =
c

4(dn + dp)
+

c

2(dn + dp)
(k − 1) = {369, 1110, 1840, 2580}

The first two resonant frequencies are a little higher than those reported for KS (350Hz and
1050Hz). The next two are a bit lower than the reported measurements (1900Hz and 2750Hz),
probably because the approximations An = Ap and dn = dp are not exactly correct.

4. Suppose that the mouth, for an /n/, is about 5cm long, from the velum to the tongue tip closure.

(a) (1 point) What is the frequency of the corresponding antiformant?

Solution: The mouth susceptance is

Bm(s) =
Am
ρc

tanh(dms/c),

which has singularities at

Fl =
c

4dm
+

c

2dm
(l − 1)

The first such singularity is 354/4× 0.05 = 1770Hz.

(b) (1 point) By setting Bi(s) + Bm(s) = 0, it is possible to calculate the formant frequencies of the
/n/. Suppose that Bi(s) is given by the value you calculated in problem 3. The exact values of
the formants of /n/ could be calculated using the method shown in Figure 2, if we knew the values
of Am and An. Since we don’t know the values of Am and An, use the fact that each formant
is somewhere between one of the singularities of Bi(s) and one of the zeros of Bi(s), as shown in
Figure 2, to specify lower and upper bounds on the possible frequencies of the first five formants of
/n/.

Solution: The singularities of Bi(s) are at the frequencies

c

2(dn + dp)
k = {729, 1460, 2190, 2900}

The zeros of Bi(s) are

c

4(dn + dp)
+

c

2(dn + dp)
(k − 1) = {369, 1110, 1840, 2580}

As shown in Figure 2, the first zeros of Bi(s) + Bm(s) are between the zeros of Bs(s) and the
next lower singularity. The singularity in Bm(s) splits the third zero in two; the fourth and
fifth zeros of Bi(s)+Bm(s) are between the third and fourth zeros of Bi(s) and the next higher
singularity. Thus

0 < F1 < 369

729 < F2 < 1110

1460 < F3 < 1840

1840 < F4 < 2190

2580 < F5 < 2580
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