1. Equation (4) in the article gives a formula for the prediction sum-squared error (a.k.a. the energy of the prediction residual) of an \((m-1)\)-tap linear prediction. To see why this is the case, let’s explore the origin of some of the equations in this section.

(a) (1 point) Define \(\epsilon_m\) in the following way:

\[
\epsilon_m = \sum_{n=p+1}^{N+p} (d_n^{(m-1)})^2,
\]

where

\[
d_n^{(m)} = s_n - \sum_{k=1}^{m-1} a_k^{(m-1)} s_{n-k},
\]

and \(a_k^{(m)}\) is the \(k\)th coefficient of an order-\(m\) linear predictor. Solve for \(\frac{\partial \epsilon_m}{\partial a_k^{(m-1)}}\) in terms of the coefficients \(a_i^{(m)}\) and the speech signal \(s_n\).

(b) (1 point) Consider setting \(\frac{\partial \epsilon_m}{\partial a_k^{(m-1)}} = 0\) simultaneously for all \(k \in \{1, \ldots, m\}\); this results in \(m\) linear equations in terms of \(s_n\) and \(a_i^{(m-1)}\). Convert these \(m\) linear equations into a single matrix equation in terms of the vector \(\tilde{a}_{m-1} = [a_1^{(m-1)}, \ldots, a_{m-1}^{(m-1)}]^T\), the vector \(\tilde{c}_{m-1} = [\phi(0,1), \ldots, \phi(0,m-1)]^T\), and the matrix \(\Phi_{m-1}\) defined as

\[
\Phi_{m-1} = \begin{bmatrix}
\phi(1,1) & \cdots & \phi(1,m-1) \\
\vdots & \ddots & \vdots \\
\phi(m-1,1) & \cdots & \phi(m-1,m-1)
\end{bmatrix},
\]

where

\[
\phi(i,j) = \sum_{n=p+1}^{N+p} s_{n-i}s_{n-j}
\]

(c) (1 point) Notice that the equation \(\frac{\partial \epsilon_m}{\partial a_k^{(m-1)}} = 0\) can be written as

\[
\sum_{n=p+1}^{N+p} d_n^{(m-1)} s_{n-k} = 0 \quad (1)
\]

Eq. (1) is called the orthogonality condition. It says that the coefficient \(a_k^{(m-1)}\) that minimizes \(\epsilon_m\) is the one that eliminates all correlation between \(d_n^{(m-1)}\) (the prediction residual) and \(s_{n-k}\)
2. (1 point) Suppose that \(d \). The idea of perceptual noise shaping is to shape the speech signal, producing \(\hat{\phi}(i, j) \) if your equation has any terms that are quadratic in \(a_i^{(m-1)} \), then you haven’t simplified it far enough, keep going.

(d) (1 point) The covariance LPC method solves the equation \(\Phi \tilde{a} = \tilde{e} \) in three steps. First, it computes the Cholesky decomposition \(\Phi = LL^T \), where \(L \) is a lower-triangular matrix. The Cholesky decomposition is an \(O(p^3) \) operation. Second, it solves for the vector \(\tilde{q} \) in the equation \(L\tilde{q} = \tilde{c} \) this is an \(O(p^2) \) operation. Third, it solves for \(\tilde{a} \) either directly, by solving the equation \(\tilde{q} = L^T \tilde{a} \), or indirectly, using the “known relation between the partial correlations and the predictor coefficients” that is named but not described in the article; in either case, this is an \(O(p^2) \) operation.

The part of all this that’s interesting to us is that, if we define the order-\(m \) equations as \(\Phi_{m-1} = L_{m-1} L_{m-1}^T, L_{m-1} \tilde{q}_{m-1} = \tilde{c}_{m-1}, \) and \(\tilde{q}_{m-1} = L_{m-1}^T \tilde{a}_{m-1}, \) then we get that

\[
\sum_{i=1}^{m-1} q_i^2 = \tilde{q}_{m-1}^T \tilde{q}_{m-1} = \tilde{a}_{m-1}^T \Phi_{m-1} \tilde{a}_{m-1} = \tilde{a}_{m-1}^T \tilde{c}_{m-1} \tag{2}
\]

Use Eq. (2) to re-write your solution to part (c) in terms of the coefficients \(q_i \).

Digression: here is an observation that is not necessary to solve this problem, but that might help you to deepen your understanding of LPC. In the Cholesky decomposition \(\Phi = LL^T \), the \(m^{th} \) row of \(L \) only depends on the first \(m \) rows and columns of \(\Phi \), therefore \(L_{m-1} \) is a submatrix of \(L_m \). Similarly, in the equation \(L\tilde{q} = \tilde{c} \), the \(m^{th} \) coefficient, \(q_m \), depends only on the first \(m \) rows of \(L \), and the first \(m \) elements of \(\tilde{c} \), therefore the vector \(\tilde{q}_{m-1} \) is a subvector of \(\tilde{q}_m \). The same is not true of the equation \(L^T \tilde{q}_m = \tilde{a}_m \). The \(i^{th} \) predictor coefficient of an order-\(m \) predictor, is therefore not the same as the \(i^{th} \) coefficient of an order-\(p \) predictor:

\[
a_i^{(m)} \neq a_i^{(p)},
\]

but the partial correlation coefficient \(q_i/\epsilon_i \) is the same for any order, \(m \) or \(p \), as long as \(m \geq i \) and \(p \geq i \).

2. (1 point) Suppose that \(d_n \) is the LPC residual, and \(v_n \) is the pitch prediction residual, thus

\[
v_n = d_n - \beta_1 d_{n-M+1} - \beta_2 d_{n-M} - \beta_3 d_{n-M-1} \tag{3}
\]

If \(d_n \) were perfectly periodic with a period of \(M \), then it would be possible to set \(v_n = 0 \) (after the first pitch period) by simply choosing \(\beta_1 = 0, \beta_2 = 1, \beta_3 = 0 \). The reason Eq. (3) contains three delay terms, instead of just one, is that the pitch period might not be an integer.

Suppose that \(d_n \) is perfectly periodic, but with a period \(\tau \) that is not an integer. In this case, the ideal pitch predictor should be \(P_d(e^{j\omega}) = e^{-j\omega/\tau} \) in the range \(-\pi < \omega < \pi\). What is the inverse transform, \(p_d[n] \), of this pitch predictor? What would be reasonable values to choose for \(M, \beta_1, \beta_2, \) and \(\beta_3 \)?

3. The idea of perceptual noise shaping is to shape the speech signal, producing \(Y(\omega) = (1 - R(\omega))S(\omega) \), prior to quantizing it. Quantization generates a synthetic output, \(\hat{q}_n \), in order to minimize

\[
\epsilon = \sum_{n=p+1}^{N+p} q_n^2 = \sum_{n=p+1}^{N+p} (y_n - \hat{y}_n)^2,
\]

where

\[
\hat{Y}(\omega) = \frac{1}{1 - P_A(\omega)} Q(\omega)
\]

\[
\hat{S}(\omega) = \frac{1}{1 - R(\omega)} \hat{Y}(\omega)
\]
(a) (1 point) Use Parseval’s theorem to express \(\epsilon \) as an integral, over frequency, of some function of \(S(\omega) \), \(\hat{S}(\omega) \), and \(R(\omega) \).

(b) (1 point) Usually, the quantization noise added in one time step, \(q_n = \hat{y}_n - y_n \), is uncorrelated with the quantization noise added in any other time step, thus \(q_n \) is white noise, with some average power \(\sigma_q^2 \). Under the assumption that \(q_n \) is white noise with power \(\sigma_q^2 \), what is the power spectrum of \(\hat{s}_n - s_n \)?

(c) (1 point) For noise shaping, a reasonable set of principles might include:

1. Near a spectral pole of \(S(\omega) \), it’s OK to have louder noise, because the noise will be masked by the high energy of \(S(\omega) \), thus the perceptual weighting \(|1 - R(\omega)|^2 \) can be smaller at these frequencies, perhaps something like

\[
1 \geq |1 - R(\omega)|^2 \geq \frac{1}{|S(\omega)|^2} \text{ if } \omega \approx \omega_k,
\]

where \(\omega_k \) is one of the spectral peaks of \(S(\omega) \).

2. The perceptual weighting should be constant at frequencies far from any spectral pole, thus

\[
|1 - R(\omega)|^2 \approx 1 \text{ if } |\omega - \omega_k| \text{ is large}
\]

Principle #2 is satisfied if \(1 - R(\omega) \) is an all-pass filter, i.e., its zeros have the same frequencies as its poles. Principle #1 is satisfied if the zeros and poles both have the frequencies of the LPC predictor, \(1 - P_A(z) = 1 - \sum_{k=1}^{p} a_k z^{-k} \), and if the bandwidths of the poles are larger than the bandwidths of the zeros. To see that this is the case, consider the all-pass filter

\[
1 - R(z) = \frac{1 - p_1 z^{-1}}{1 - ap_1 z^{-1}},
\]

where \(p_1 = e^{-\sigma_1 + j\omega_1} \), \(\sigma_1 > 0 \) is the (real-valued) half-bandwidth of the pole (measured in radians/sample), and \(a \) is some real constant in the range \(0 \leq a < 1 \). Show that \(|1 - R(e^{j\omega})| < 1 \), where \(|1 - R(e^{j\omega})| < 1 \) is the magnitude response of the all-pass filter at the frequency \(\omega = \omega_1 \).

(d) (1 point) Suppose that a speech signal has pole frequencies that are measured in radians/sample as \(\omega_k \), for \(1 \leq k \leq p \), and corresponding bandwidths of \(2\sigma_k \). (Assume that these are arranged in complex conjugate pairs, e.g., \(\omega_{p+1-k} = -\omega_k \), and \(\sigma_{p+1-k} = \sigma_k \)). The LPC polynomial is therefore

\[
1 - P_A(z) = 1 - \sum_{k=1}^{p} a_k z^{-k} = \prod_{i=1}^{p}(1 - p_i z^{-1}),
\]

where \(p_i = e^{-\sigma_i + j\omega_i} \). Eq. (21) in the article suggest using a perceptual weighting filter that has \(1 - P_A(z) \) in the numerator, and the following denominator:

\[
1 - \sum_{k=1}^{p} \alpha^k a_k z^{-k},
\]

where \(0 \leq \alpha \leq 1 \). Show that Eq. (5) has roots that have the same frequencies \((\omega_i) \) as \(1 - P_A(z) \), and that its bandwidths have been increased to \(\sigma_i - \ln \alpha \).