
ECE 537 Practice Exam 3

UNIVERSITY OF ILLINOIS
Department of Electrical and Computer Engineering

The real exam will be December 16, 2022 in class

• This is a closed-book exam.

• You are allowed to bring two 8.5x11 sheets of handwritten notes (front and back).

• No calculators are allowed. Please do not simplify explicit numerical expressions.

• There are 200 points in the exam. Points for each problem are specified by the problem number.
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Possibly Useful Charts and Formulas

G(1000, L) =

n∑
k=1

bkG(1000, Lk), bk =

[
250 + ∆f

1000

]
Q(Lk)

Dynamic Time Warping

Ai,k = max (Ai−1,k, Ai,k−1, ai,k +Ai−1,k−1)

Linear Prediction

s[n] = Ge[n] +

p∑
m=1

ams[n−m] = h[n] ∗ x[n]

H(z) =
G

1−
∑N
m=1 amz

−m
=

G∏N
k=1 (1− pkz−1)

E =

N−1∑
n=0

e2[n] =

N−1∑
n=0

(
s[n]−

p∑
m=1

ams[n−m]

)2

0 =

N−1∑
n=0

(
s[n]−

p∑
m=1

ams[n−m]

)
s[n− k], 1 ≤ k ≤ p

~c = Φ~a
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Hidden Markov Models

α̃t(j) =

N∑
i=1

α̂t−1(i)aijbj(~xt), α̂t(j) =
1∑N

j=1 α̃t(j)

βt(i) =

N∑
j=1

aijbj(~ot+1)βt+1(j), 1 ≤ i ≤ N, 1 ≤ t ≤ T − 1

āij =

∑T−1
t=1 ξt(i, j)∑N

j=1

∑T−1
t=1 ξt(i, j)

, µ̄i =

∑T
t=1 γt(i)~ot∑T
t=1 γt(i)

Formant Synthesis

ck = −e−2πBkT , bk = 2e−πBkT cos(2πFkT ), ak = 1− bk − ck
Softmax

p(i|f) =
exp(fi)∑
j exp(fj)

⇒ ∂(− ln p(i|f))

∂fk
=

{
p(i|f)− 1 k = i
p(k|f) k 6= i

CTC

dL
dyτk

= −γτ (k)

yτk
, γτ (k) = p(πτ = k, `|x) =

1

yτk

∑
s:`′s=k

ατ (`′1:s)βτ (`′s:|`′|)

βτ (`′s:|`′|) = yτ`′s

(
βτ+1(`′s:|`′|) + βτ+1(`′(s+1):|`′|) + βτ+1(`′(s+2):|`′|)

[
`′s 6= – ∧ `′s 6= `′s+2

])
Transformer

Attention(Q,K, V ) = softmax(QKT )V

headi = Attention
(
QWQ

i ,KW
K
i , V W

V
i

)
MultiHead(Q,K, V ) = Concat(head1, . . . ,headh)WO

Self-Supervised

LCPC = −
∑
t

ln
exp (Score(xt+k, ct))∑
x∈X exp (Score(x, ct))

LHuBERT = −
∑
t∈M

ln
exp (Score(Aot, ec))∑C

c′=1 exp (Score(Aot, ec′))

∇ze(x)LVQVAE ≈ ∇zq(x)LVQVAE

Speech Resynthesis

yi =

D∑
j=−D

Kjhi+j , [h1, . . . , h2L+1] = [0, z1, 0, z2, 0, . . . , 0, zL, 0]

LG(D,G) =

J∑
j=1

[Ladv(G,Dj) + λfmLfm(G,Dj)] + λrLrecon(G)
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1. (30 points) A particular signal contains component tones at 150, 300, 1050, and 1200Hz. The levels of
these four components are 70, 70, 45, and 50dB SPL, respectively.

(a) Find the loudness levels of all four components.

Solution: The loudness levels of these four tones are 60, 68, 45, and 50 phons, respectively.

(b) Find the loudness of each of these four components.

Solution: The loudnesses are 4350, 7020, 1500, and 2200 sones, respectively.

(c) What is the total loudness of this signal?

Solution: The masking coefficients are 1, 0.8
(

400
1000

)
, 1, and 0.9

(
400
1000

)
. The total loudness of

this signal is 4350 + 0.8
(

400
1000

)
7020 + 1500 + 0.9

(
400
1000

)
2200.
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(d) Suppose that the correlogram of this signal is computed using critical bandwidths B(f) given by
the following equation, where B(f) and f are both in Hertz:

B(f) =


100 0 ≤ f ≤ 1000
200 1000 < f ≤ 2000
300 2000 < f ≤ 3000
400 3000 < f ≤ 4000

What is the correlogram of this signal, as a function of the filter center frequency f and autocorre-
lation delay τ?

Solution: OK, let’s first find the amplitudes of each tone. Those would be

A1 = Aref1070/20

A2 = Aref1070/20

A3 = Aref1045/20

A4 = Aref1050/20,

where Aref is whatever amplitude corresponds to 1dB. The autocorrelation of A cos(ωt+ θ) is
A2

2 cos(ωτ), so

φ(f, τ) =



0 f < 50
A2

1

2 cos(2π150τ) 100 < f < 200
0 200 < f < 250
A2

2

2 cos(2π300τ) 250 < f < 350
0 350 < f < 1000
A2

3

2 cos(2π1050τ) 1000 < f < 1100
A2

3

2 cos(2π1050τ) +
A2

4

2 cos(2π1200τ) 1100 < f < 1150
A2

4

2 cos(2π1200τ) 1150 < f < 1300
0 1400 < f
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2. (20 points) Consider an LPC-based speech synthesizer with no pitch prediction; thus the speech signal
sk[n] is generated from an excitation signal ek[n] using only

sk[n] = ek[n] +

p∑
m=1

amsk[n−m], (1)

where am are the linear prediction coefficients. Note that Eq. (1) can also be written as

Sk(z) =
1

1− P (z)
Ek(z)

P (z) =

p∑
m=1

amz
−m

Suppose that we wish to exhaustively test K different candidate excitations, ek[n], for 1 ≤ k ≤ K. We
want to choose the excitation that minimizes the perceptually weighted error, Ek, defined as

Ek =
N−1∑
n=0

y2k[n],

where

Yk(z) =
1− P (z)

1− P (z/α)
Sk(z),

Demonstrate that yk[n] can be generated from ek[n] using only p multiplications per sample.

Solution:

Yk(z) =
1

1− P (z/α)
Ek(z)

P (z/α) =

p∑
m=1

amα
mz−m

Therefore, if we compute the coefficients cm = αmam once per frame, we can then compute all of
the frame’s N samples using

yk[n] = ek[n] +

p∑
m=1

cmyk[n−m]
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3. (20 points) The scaling constant, in the standard scaled-forward algorithm, can be interpreted as

ct = P (ot|o1, . . . , ot−1, λ)

This is an intriguing quantity; it suggests that we are predicting the next spectrum, given the previous
spectra. Suppose that somebody else has provided you with a table of the non-scaled forward probabilities
for a particular waveform,

αt(i) = P (qt = i, o1, . . . , ot|λ)

Is it possible to compute cT for the last frame without computing the scaled forward algorithm for all
time steps? In other words, can you come up with a formula for cT in terms of αt(i), ai,j , and bi(k),
for some appropriate values of i, j, t, k, but without computing the scaled forward algorithm for all time
steps?

Solution: First, we want a probability conditioned on o1, . . . , ot−1. We can get that by normalizing
αt−1(i):

P (qt−1 = i|o1, . . . , ot−1, λ) =
αt−1(i)∑N
j=1 αt−1(j)

Then we can find the probability of ot given o1, . . . , ot−1 by summing over all of the ways in which
ot could have been made:

P (ot|o1, . . . , ot−1, λ) =

N∑
i=1

N∑
j=1

P (qt−1 = i|o1, . . . , ot−1, λ)aijbj(ot)

=

∑N
i=1

∑N
j=1 αt−1(i)aijbj(ot)∑N
j=1 αt−1(j)

=

∑N
j=1 αt(j)∑N
j=1 αt−1(j)
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4. (40 points) A neural net can be used to transform, in frame n, a source speaker’s vector of formant
frequencies, sn = [sn,1, . . . , sn,3]T , to t̂n, an estimate of the target speaker’s vector of formant frequencies,
tn = [tn,1, . . . , tn,3]T . This can be done using a two-layer fully-connected network of the form

hn = tanh(W1sn)

t̂n = W2hn

The weight matrices W1 and W2 are trained to minimize

L =
1

2

∑
n

‖tn − t̂n‖22

Note that, for scalar y = tanh(x), ∂y
∂x = 1− y2.

(a) Formant frequency measurements are sometimes erroneous. The effect of a formant frequency error
on training can be estimated by finding the sensitivity of the loss gradient to the formant. Let
W`,i,j be the (i, j)th element of W`; the sensitivity of ∂L

∂W`,i,j
to an error in the measurement of sn,k

can be estimated as ∂
∂sn,k

(
∂L

∂W`,i,j

)
. Find the sensitivity of the layer-2 gradient, i.e., find

∂

∂sn,k

(
∂L

∂W2,i,j

)
Your answer need not be simplified, but it should contain no unresolved derivatives.

Solution:

∂L
∂W2,i,j

=
∑
n

∂L
∂t̂n,i

∂t̂n,i
∂W2,i,j

=
∑
n

(t̂n,i − tn,i)hn,j

This depends on sn,k in two ways: both t̂n,i and hn,j depend on sn,k.

∂

∂sn,k

(
∂L

∂W2,i,j

)
=
∑
n

(
∂t̂n,i
∂sn,k

hn,j + (t̂n,i − tn,i)
∂hn,j
∂sn,k

)

=
∑
n

(
hn,j

∑
`

∂t̂n,i
∂hn,`

∂hn,`
∂sn,k

+ (t̂n,i − tn,i)
∂hn,j
∂sn,k

)

=
∑
n

(
hn,j

∑
`

W2,i,`(1− h2n,`)W1,`,k + (t̂n,i − tn,i)W2,i,j(1− h2n,j)W1,j,k

)
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(b) During test time, errors in measuring sn can cause errors in the estimated target, t̂n, which, in turn,
cause errors in the synthesis filter. Let the synthesis filter for the kth formant at frame n be

Rn,k(z) =
an,k

1− bn,kz−1 − cn,kz−2
,

where bn,k and cn,k are computed so that Rn,k(z) is a resonator at a frequency of t̂n,k Hertz, with
a bandwidth of Bk Hertz. Assume that the bandwidths, Bk, are fixed, and that only the formant
frequencies, t̂n,k, are computed at the output of the neural network. How much does an error in

the estimation of sn,j affect the filter coefficient bn,k? In other words, what is
∂bn,k

∂sn,j
? Your answer

will be a function of the variables provided, and of the sampling period T .

Solution:

bn,k = 2e−πBkT cos(2πt̂n,kT )

∂bnk

∂sn,j
= −4πTe−πBkT sin(2πt̂n,kT )

∂t̂n,k
∂sn,j

= −4πTe−πBkT sin(2πt̂n,kT )
∑
i

∂t̂n,k
∂hn,i

∂hn,i
∂sn,j

= −4πTe−πBkT sin(2πt̂n,kT )
∑
i

W2,k,i(1− h2n,i)W1,i,j
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5. (40 points) Consider an RNN with

hn = tanh (Uxn + V hn−1) = [hn,1, . . . , hn,d]
T

yn = softmax (Whn) = [yn,1, . . . , yn,c]
T

Suppose the output is scored using CTC, i.e.,

L = − ln
∑

π∈B−1(z)

N∏
n=1

yn,πn

Let `′ = [`′1, . . . , `
′
2L+1] = [–, z1, –, z2, · · · , zL, –] be the blank-expansion of z = [z1, . . . , zL].

(a) Assume `′i is a character that occurs nowhere else in `′, i.e., ∀j 6= i, `′j 6= `′i. What is ∂L
∂yn,`′

i

? If you

need auxiliary variables, define them clearly.

Solution: There are at least two very different-looking solutions to this problem, but I think
they are actually the same, even though they look different.

1. By directly differentiating, you get

∂L
∂yn,`′i

= − 1∑
π∈B−1(z)

∏N
n=1 yn,πn

∑
π∈B−1(z) and πn=`′i

∏
m:m 6=n

ym,πn

2. You can get an equivalent but very different-looking solution by copying the answer down
from the formula sheet, and appropriately modifying the notation.

∂L
∂yn,`′i

=
γn(`′i)

yn,`′i
,

where γn(`′i) is defined to be

γn(`′i) =
1

yn,`′i

∑
s:`′s=`

′
i

α(`′1:s)β(`′s:|`′|) =
1

yn,`′i
α(`′1:s)β(`′s:|`′|),

where α and β are defined by

βτ (`′s:|`′|) = yτ`′s

(
βτ+1(`′s:|`′|) + βτ+1(`′(s+1):|`′|) + βτ+1(`′(s+2):|`′|)

[
`′s 6= – ∧ `′s 6= `′s+2

])
ατ (`′s:|`′|) = yτ`′s

(
ατ−1(`′1:s) + ατ−1(`′1:(s−1)) + ατ−1(`′1:(s−2))

[
`′s 6= – ∧ `′s 6= `′s−2

])
βN (`) =


yN,– ` = [–]
yN,`′2L ` = [`′2L, –]

0 otherwise

α1(`) =


y1,– ` = [–]
y1,`′2 ` = [–, `′2]
0 otherwise
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(b) Suppose you have already computed ∂L
∂yn,k

for a particular n, and for all k ∈ {1, . . . , c}. Suppose

you have also already computed ∂L
∂hn+1,j

for the same n, and for all j ∈ {1, . . . , d}. In terms of ∂L
∂yn,k

and ∂L
∂hn+1,j

, what is ∂L
∂hn,i

, as a function of i, for all i ∈ {1, . . . , d}?

Solution:

∂L
∂hn,i

=

d∑
j=1

∂L
∂hn+1,j

∂hn+1,j

∂hn,i
+

c∑
k=1

∂L
∂yn,k

∂yn,k
∂hn,i

Now,

hn+1,j = tanhj (Uxn+1 + V hn) ,

so,

∂hn+1,j

∂hn,i
= (1− h2n+1,j)Vj,i

Similarly, but somewhat more challenging,

yn,k =
exp(Wk,:hn)∑c
`=1 exp(W`,:hn)

,

therefore

∂yn,k
∂hn,i

=
exp(Wk,:hn)∑c
`=1 exp(W`,:hn)

Wk,i −
c∑

m=1

exp(Wk,:hn) exp(Wm,:hn
(
∑c
`=1 exp(W`,:hn))2

Wm,i

= yn,k

(
Wk,i −

c∑
m=1

yn,mWm,i

)

Putting those together, we get that

∂L
∂hn,i

=

d∑
j=1

∂L
∂hn+1,j

(1− h2n+1,j)Vi,j +

c∑
k=1

∂L
∂yn,k

yn,k

(
Wk,i −

c∑
m=1

yn,mWm,i

)
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6. (25 points) Suppose
Y = softmax(QKT )V

Let Yi,j , Qi,j , Ki,j , and Vi,j be the (i, j)th elements of the matrices Y , Q, K and V , respectively. What

is
∂Yi,j

∂Kk,`
? If you need any intermediate variables, please define them.

Solution: This problem is actually much harder than I thought it was when I designed it. First,
let’s define the attention matrix:

A = softmax(QKT )

Ai,j =
exp(

∑
mQi,mKj,m)∑

n exp(
∑
mQi,mKn,m)

Y = AV

Yi,j =
∑
p

Ai,pVp,j

∂Yi,j
∂Kk,`

=
∑
p

∂Ai,p
∂Kk,`

Vp,j

And now the hard part:

∂Ai,p
∂Kk,`

=
exp(

∑
mQi,mKp,m)∑

n exp(
∑
mQi,mKn,m)

∂
∑
mQi,mKp,m

∂Kk,`

−
∑
q

exp(
∑
mQi,mKp,m) exp(

∑
mQi,mKq,m)

(
∑
n exp(

∑
mQi,mKn,m))2

∂
∑
mQi,mKq,m

∂Kk,`

=

{
Ai,k(1−Ai,k)Qi,` p = k
−Ai,pAi,kQi,` otherwise

Putting it together, we have:

∂Yi,j
∂Kk,`

= Ai,kQi,`

(
Vk,j −

∑
p

Ai,pVp,j

)
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7. (25 points) The HuBERT loss function is

L = −
∑
n

ln
exp(cTnen)∑
e′∈E exp(cTne

′)
,

where cn is the transformer output at time n, en is the codevector corresponding to the input spectrum
at time n, and E is the set of all codevectors. The codevectors are not usually trained from data, but
it would be possible to train them from data. For example, we could use the following gradient descent
algorithm:

v ← v − η∇vL ∀v ∈ E (2)

where η is a learning rate. Prove that the gradient descent step shown in Eq. (2) moves v toward the
Transformer outputs, cn, of all of the frames for which en = v, and moves v away from cm in all frames
for which em 6= v.

Solution:

∇vL = −
∑
n

∇v ln
exp(cTnen)∑
e′∈E exp(cTne

′)

=
∑

n:en=v

(
exp(cTnen)∑
e′∈E exp(cTne

′)
− 1

)
cn +

∑
m:em 6=v

(
exp(cTmem)∑
e′∈E exp(cTme

′)

)
cn

The CPC gradient descent step would then be

v ← v +
∑

n:en=v

(
1− exp(cTnen)∑

e′∈E exp(cTne
′)

)
cn −

∑
m:em 6=v

(
exp(cTmem)∑
e′∈E exp(cTme

′)

)
cn

The factor multiplying each cn for which en = v is a positive number, since the softmax is always less
than 1. The factor multiplying each cm for which em 6= v is a negative number, since the softmax
is always greater than 0.
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