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The real exam will be October 24, 2022 in class

• This is a closed-book exam.

• You are allowed to bring one 8.5x11 sheet of handwritten notes (front and back).

• No calculators are allowed. Please do not simplify explicit numerical expressions.

• There are 100 points in the exam. Points for each problem are specified by the problem number.
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Possibly Useful Charts and Formulas

Dynamic Time Warping

Ai,k = max (Ai+1,k, Ai,k+1, ai,k +Ai+1,k+1)

Linear Prediction

s[n] = Ge[n] +

p∑
m=1

ams[n−m] = h[n] ∗ x[n]

H(z) =
G

1−
∑N

m=1 amz
−m

=
G∏N

k=1 (1− pkz−1)

E =

N−1∑
n=0

e2[n] =

N−1∑
n=0

(
s[n]−

p∑
m=1

ams[n−m]

)2

0 =

N−1∑
n=0

(
s[n]−

p∑
m=1

ams[n−m]

)
s[n− k], 1 ≤ k ≤ p

~c = Φ~a

Hidden Markov Models

αt(j) =

N∑
i=1

αt−1(i)aijbj(~ot), 1 ≤ j ≤ N, 2 ≤ t ≤ T

βt(i) =

N∑
j=1

aijbj(~ot+1)βt+1(j), 1 ≤ i ≤ N, 1 ≤ t ≤ T − 1

γt(i) =
αt(i)βt(i)∑N

k=1 αt(k)βt(k)

ξt(i, j) =
αt(i)aijbj(~ot+1)βt+1(j)∑N

k=1

∑N
`=1 αt(k)ak`b`(~ot+1)βt+1(`)

α̃t(j) =

N∑
i=1

α̂t−1(i)aijbj(~xt)

ct =

N∑
j=1

α̃t(j)

α̂t(j) =
1

gt
α̃t(j)

āij =

∑T−1
t=1 ξt(i, j)∑N

j=1

∑T−1
t=1 ξt(i, j)

Ūi =

∑T
t=1 γt(i)(~ot − ~µi)(~xt − ~µi)

T∑T
t=1 γt(i)

µ̄i =

∑T
t=1 γt(i)~ot∑T
t=1 γt(i)
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1. (20 points) In (Velichko & Zagoruyko, 1970), the best time alignment was defined to be the one that
maximized the sum of similarities. Consider, instead, an alignment that minimizes the sum of distances.
Consider the problem of finding a sequence of alignments I = [i(1), . . . , i(T )] and J = [j(1), . . . , j(T )]
where I, J , and T are chosen to maximize

D = max
i(t),j(t)∀1≤t

d (i(t− 1), j(t− 1), i(t), j(t))

where

d (i(t− 1), j(t− 1), i(t), j(t)) =


C i(t) = i(t− 1), j(t) = j(t− 1) + 1

C i(t) = i(t− 1) + 1, j(t) = j(t− 1)

di(t),j(t) i(t) = i(t− 1) + 1, j(t) = j(t− 1) + 1

∞ otherwise

In other words, the cost of any horizontal or vertical move in the alignment matrix is a constant (C),
the cost of a diagonal move is dependent on i(t) and j(t), and no other moves are possible. Suppose
that the lengths of the two utterances are the same, i.e., i(T ) = j(T ) = N . What is the smallest value
of C that is guaranteed to find an alignment with N diagonal moves?

Solution: Any diagonal move can be avoided by taking one horizontal move and one vertical move.
The smallest value of C sufficient to guarantee that there are no vertical or horizontal moves is

C ≥ 1

2
max

1≤i,j≤N
di,j
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2. (20 points) Suppose we have the following model of pitch prediction:

e[n] = d[n]− β1d[n− P + 1]− β2d[n− P ]− β3[n− P − 1],

and we wish to find the values of ~β = [β1, β2, β3]T that minimizes

E =

N−1∑
n=0

(e[n])
2

What value of the vector ~β minimizes E? If you write your answer in terms of any other vectors, matrices,
or covariance functions, be sure to define them.

Solution: By the principle of orthogonality, E is minimized if and only if

N−1∑
n=0

e[n]d[n− P + 1] = 0

N−1∑
n=0

e[n]d[n− P ] = 0

N−1∑
n=0

e[n]d[n− P − 1] = 0

Substituting in the definition of e[n], we find that E is minimized by

~β = Φ−1~c,

where

Φ =

 φ(P − 1, P − 1) φ(P − 1, P ) φ(P − 1, P + 1)
φ(P, P − 1) φ(P, P ) φ(P, P + 1)

φ(P + 1, P − 1) φ(P + 1, P ) φ(P + 1, P + 1)

 , ~c =

 φ(P − 1, 0)
φ(P, 0)

φ(P + 1, 0)

 ,
and

φ(m, k) =

N−1∑
n=0

d[n−m]d[n− k]
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3. (20 points) An LPC-based speech coder generates every N -sample frame of a synthetic speech signal,
ŝ[n], from a synthetic quantized residual, q̂[n]. There are two ways this may be done. First, the synthesis
may be done using IIR filters, as shown in Equations (1) and (2):

d̂[n] = q̂[n] +

3∑
m=1

βmd̂[n− P + 2−m] (1)

ŝ[n] = d̂[n] +

10∑
m=1

akŝ[n−m] (2)

Second, the synthesis may be performed using FIR filters, as shown in Equation (3):

ŝ[n] =

n∑
m=0

h[n−m]q̂[m], (3)

where

H(z) =

(
1

1−
∑3

m=1 βmz
−P+2−m

)(
1

1−
∑10

m=1 akz
−m

)
Suppose that most of the samples of q̂[n] are zero; only M samples per frame, on average, are non-zero,
where M � N . Suppose that h[n], am, and βm have already been computed, and your only task now
is to decide whether the FIR or the IIR synthesis method is more computationally efficient. For what
values of M is the FIR synthesis more computationally efficient (fewer multiply operations) than the
IIR synthesis method?

Solution: The IIR synthesis method requires 13 multiplications per sample: 3 to compute d̂[n], then
10 more to compute ŝ[n]. The FIR synthesis method requires us to multiply every nonzero sample
of q̂[n] with, on average, N

2 samples of h[n] (half a frame), thus it requires MN/2 multiplications
per frame, or M/2 multiplications per sample. The FIR method is therefore more efficient if

M < 26

Note that this argument is only valid if h[n] has already been computed.
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4. (20 points) Consider a two-state HMM with parameters. Suppose that all of the parameters of this
HMM have the value of 0.5. In other words, suppose that:

πi = P (q1 = i) = 0.5 ∀i ∈ {1, 2}
ai,j = P (qt = j|qt−1 = i) = 0.5 ∀i, j ∈ {1, 2}

bj(k) = P (ot = k|qt = j) = 0.5 ∀j, k

Define

α̂t(i) = P (qt = i|o1, . . . , ot, λ)

Find the value of α̂300(1).

Solution: Using the scaled forward algorithm, we see that

α̃1(i) = πibi(o1) = 0.25,

c1 = α̃1(1) + α̃1(2) = 0.5,

α̂1(i) =
α̃1(i)

c1
= 0.5.

Then,

α̃2(j) =
∑
i

α̂1(i)ai,jbj(o2) = 0.25

c2 = α̃2(1) + α̃2(2) = 0.5,

α̂2(i) =
α̃2(i)

c2
= 0.5.

Following this logic, we find that α̂t(i) = 0.5 for all i and t, therefore

α̂300(1) = 0.5
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5. (20 points) Recall that Baum’s auxiliary can be written as

Q(λ, λ̄) =
∑
Q

P (Q|O, λ) lnP (O,Q|λ̄),

and that the part related to the observation pdf can be simplified to

Qb(λ, λ̄) =

T∑
t=1

N∑
i=1

γt(i) ln b̄i(ot),

where the terms are defined as

γt(i) = P (qt = i|O, λ)

b̄i(ot) = P (ot = ot|qt = i, λ̄)

Suppose that we have a sequence of scalar observations, O = [o1, . . . , oT ], modeled by state-dependent
Gaussian pdfs,

b̄i(ot) =
1√

2πρ̄i
e
− (ot−µ̄i)

2

2ρ̄i ,

where µ̄i and ρ̄i are the state-dependent mean and variance, respectively. As you know, the variance
terms in a Gaussian need to be non-negative. We can force ρ̄i to be non-negative by maximing a
Lagrangian term of the form

L(λ̄) = Qb(λ, λ̄)−
N∑
i=1

κiρ̄i

Simplify L(λ̄) so that it is a function of only γt(i), ot, µ̄i, ρ̄i, and κi for 1 ≤ t ≤ T , 1 ≤ i ≤ N .

Solution: This looks complicated, but after a bit of staring, we realize that it is only asking us to
take the logarithm of a Gaussian. The result is

L(λ̄) =

T∑
t=1

N∑
i=1

γt(i)

(
−1

2
ln(2πρi)−

(ot − µ̄i)
2

2ρ̄i

)
−

N∑
i=1

κiρ̄i
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