ECE 537 Exam 2
 UNIVERSITY OF ILLINOIS
 Department of Electrical and Computer Engineering

October 24, 2022

- This is a closed-book exam.
- You are allowed to bring one 8.5×11 sheet of handwritten notes (front and back).
- No calculators are allowed. Please do not simplify explicit numerical expressions.
- There are 100 points in the exam. Points for each problem are specified by the problem number.

Name: \qquad

NetID:

Possibly Useful Charts and Formulas

Dynamic Time Warping

$$
A_{i, k}=\max \left(A_{i-1, k}, A_{i, k-1}, a_{i, k}+A_{i-1, k-1}\right)
$$

Linear Prediction

$$
\begin{gathered}
s[n]=G e[n]+\sum_{m=1}^{p} a_{m} s[n-m]=h[n] * x[n] \\
H(z)=\frac{G}{1-\sum_{m=1}^{N} a_{m} z^{-m}}=\frac{G}{\prod_{k=1}^{N}\left(1-p_{k} z^{-1}\right)} \\
\mathcal{E}=\sum_{n=0}^{N-1} e^{2}[n]=\sum_{n=0}^{N-1}\left(s[n]-\sum_{m=1}^{p} a_{m} s[n-m]\right)^{2} \\
0=\sum_{n=0}^{N-1}\left(s[n]-\sum_{m=1}^{p} a_{m} s[n-m]\right) s[n-k], \quad 1 \leq k \leq p \\
\vec{c}=\Phi \vec{a}
\end{gathered}
$$

Hidden Markov Models

$$
\begin{gathered}
\alpha_{t}(j)=\sum_{i=1}^{N} \alpha_{t-1}(i) a_{i j} b_{j}\left(\vec{o}_{t}\right), \quad 1 \leq j \leq N, 2 \leq t \leq T \\
\beta_{t}(i)=\sum_{j=1}^{N} a_{i j} b_{j}\left(\vec{o}_{t+1}\right) \beta_{t+1}(j), \quad 1 \leq i \leq N, 1 \leq t \leq T-1 \\
\gamma_{t}(i)=\frac{\alpha_{t}(i) \beta_{t}(i)}{\sum_{k=1}^{N} \alpha_{t}(k) \beta_{t}(k)} \\
\xi_{t}(i, j)=\frac{\alpha_{t}(i) a_{i j} b_{j}\left(\vec{o}_{t+1}\right) \beta_{t+1}(j)}{\sum_{k=1}^{N} \sum_{\ell=1}^{N} \alpha_{t}(k) a_{k \ell} b_{\ell}\left(\vec{o}_{t+1}\right) \beta_{t+1}(\ell)} \\
\tilde{\alpha}_{t}(j)=\sum_{i=1}^{N} \hat{\alpha}_{t-1}(i) a_{i j} b_{j}\left(\vec{x}_{t}\right) \\
c_{t}=\sum_{j=1}^{N} \tilde{\alpha}_{t}(j) \\
\hat{\alpha}_{t}(j)=\frac{1}{g_{t}} \tilde{a}_{t}(j) \\
\bar{a}_{i j}=\frac{\sum_{t=1}^{T-1} \xi_{t}(i, j)}{\sum_{j=1}^{N} \sum_{t=1}^{T-1} \xi_{t}(i, j)} \\
\bar{U}_{i}=\frac{\sum_{t=1}^{T} \gamma_{t}(i)\left(\vec{o}_{t}-\vec{\mu}_{i}\right)\left(\vec{x}_{t}-\vec{\mu}_{i}\right)^{T}}{\sum_{t=1}^{T} \gamma_{t}(i)} \\
\bar{\mu}_{i}=\frac{\sum_{t=1}^{T} \gamma_{t}(i) \vec{o}_{t}}{\sum_{t=1}^{T} \gamma_{t}(i)}
\end{gathered}
$$

1. (20 points) Consider using dynamic time warping DTW to align two utterances, each of which has only two (2) frames. Let $a_{i, j}$ be the similarity between the $i^{\text {th }}$ frame of utterance 1 and the $j^{\text {th }}$ frame of utterance 2. DTW finds an optimal sequence of alignments, $I=[i(1)=0, \ldots, i(T)=2], J=[j(1)=$ $0, \ldots, j(T)=2$], according to

$$
I^{*}, J^{*}, T^{*}=\arg \max \sum_{t=1}^{T} S(i(t-1), i(t), j(t-1), j(t))
$$

where

$$
S(i(t-1), i(t), j(t-1), j(t))= \begin{cases}0 & i(t)=i(t-1), j(t)=j(t-1)+1 \\ 0 & i(t)=i(t-1)+1, j(t)=j(t-1) \\ a_{i(t), j(t)} & i(t)=i(t-1)+1, j(t)=j(t-1)+1 \\ -\infty & \text { otherwise }\end{cases}
$$

Under what circumstances would this method prefer to align frame 2 of utterance 1 with frame 1 of utterance 2?

Solution: This method will align frame 2 of utterance 1 with frame 1 of utterance 2 only if there is a path that enters $a_{1,2}$ diagonally that has a higher score than either of the other two possible paths. Since there are only two frames in total, the path that enters $a_{1,2}$ diagonally has no other diagonal steps, so this path will be chosen only if

$$
a_{1,2}>a_{1,1}+a_{2,2}
$$

and

$$
a_{1,2}>a_{2,1}
$$

2. (20 points) Suppose we want to predict the $n^{\text {th }}$ sample of a speech waveform from two other samples, $s[n-P]$ and $s[n-Q]$, thus

$$
e[n]=s[n]-a_{P} s[n-P]-a_{Q} s[n-Q]
$$

and we wish to find the values of a_{P} and a_{Q} that minimize

$$
\mathcal{E}=\sum_{n=0}^{N-1}(e[n])^{2}
$$

What values of a_{P} and a_{Q} minimize \mathcal{E} ? If you write your answer in terms of any other vectors, matrices, or covariance functions, be sure to define them.

Solution: By the principle of orthogonality, \mathcal{E} is minimized if and only if

$$
\begin{aligned}
& \sum_{n=0}^{N-1} e[n] s[n-P]=0 \\
& \sum_{n=0}^{N-1} e[n] s[n-Q]=0
\end{aligned}
$$

Substituting in the definition of $e[n]$, we find that \mathcal{E} is minimized by

$$
\left[\begin{array}{l}
a_{P} \\
a_{Q}
\end{array}\right]=\Phi^{-1} \vec{c}
$$

where

$$
\Phi=\left[\begin{array}{ll}
\phi(P, P) & \phi(P, Q) \\
\phi(Q, P) & \phi(Q, Q)
\end{array}\right], \quad \vec{c}=\left[\begin{array}{c}
\phi(0, P) \\
\phi(0, Q)
\end{array}\right]
$$

and

$$
\phi(m, k)=\sum_{n=0}^{N-1} d[n-m] d[n-k]
$$

3. (20 points) Consider an LPC-based speech synthesizer with no pitch prediction; thus the speech signal $s_{k}[n]$ is generated from an excitation signal $e_{k}[n]$ using only

$$
\begin{equation*}
s_{k}[n]=e_{k}[n]+\sum_{m=1}^{p} a_{m} s_{k}[n-m], \tag{1}
\end{equation*}
$$

where a_{m} are the linear prediction coefficients. Note that Eq. (1) can also be written as

$$
\begin{aligned}
S_{k}(z) & =\frac{1}{1-P(z)} E_{k}(z) \\
P(z) & =\sum_{m=1}^{p} a_{m} z^{-m}
\end{aligned}
$$

Suppose that we wish to exhaustively test K different candidate excitations, $e_{k}[n]$, for $1 \leq k \leq K$. We want to choose the excitation that minimizes the perceptually weighted error, \mathcal{E}_{k}, defined as

$$
\mathcal{E}_{k}=\sum_{n=0}^{N-1} y_{k}^{2}[n]
$$

where

$$
Y_{k}(z)=\frac{1-P(z)}{1-P(z / \alpha)} S_{k}(z)
$$

Demonstrate that $y_{k}[n]$ can be generated from $e_{k}[n]$ using only p multiplications per sample.

Solution:

$$
\begin{aligned}
Y_{k}(z) & =\frac{1}{1-P(z / \alpha)} E_{k}(z) \\
P(z / \alpha) & =\sum_{m=1}^{p} a_{m} \alpha^{m} z^{-m}
\end{aligned}
$$

Therefore, if we compute the coefficients $c_{m}=\alpha^{m} a_{m}$ once per frame, we can then compute all of the frame's N samples using

$$
y_{k}[n]=e_{k}[n]+\sum_{m=1}^{p} c_{m} y_{k}[n-m]
$$

4. (20 points) The scaling constant, in the standard scaled-forward algorithm, can be interpreted as

$$
c_{t}=P\left(o_{t} \mid o_{1}, \ldots, o_{t-1}, \lambda\right)
$$

This is an intriguing quantity; it suggests that we are predicting the next spectrum, given the previous spectra. Suppose that somebody else has provided you with a table of the non-scaled forward probabilities for a particular waveform,

$$
\alpha_{t}(i)=P\left(q_{t}=i, o_{1}, \ldots, o_{t} \mid \lambda\right)
$$

Is it possible to compute c_{T} for the last frame without computing the scaled forward algorithm for all time steps? In other words, can you come up with a formula for c_{T} in terms of $\alpha_{t}(i), a_{i, j}$, and $b_{i}(k)$, for some appropriate values of i, j, t, k, but without computing the scaled forward algorithm for all time steps?

Solution: First, we want a probability conditioned on o_{1}, \ldots, o_{t-1}. We can get that by normalizing $\alpha_{t-1}(i)$:

$$
P\left(q_{t-1}=i \mid o_{1}, \ldots, o_{t-1}, \lambda\right)=\frac{\alpha_{t-1}(i)}{\sum_{j=1}^{N} \alpha_{t-1}(j)}
$$

Then we can find the probability of o_{t} given o_{1}, \ldots, o_{t-1} by summing over all of the ways in which o_{t} could have been made:

$$
\begin{aligned}
P\left(o_{t} \mid o_{1}, \ldots, o_{t-1}, \lambda\right) & =\sum_{i=1}^{N} \sum_{j=1}^{N} P\left(q_{t-1}=i \mid o_{1}, \ldots, o_{t-1}, \lambda\right) a_{i j} b_{j}\left(o_{t}\right) \\
& =\frac{\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{t-1}(i) a_{i j} b_{j}\left(o_{t}\right)}{\sum_{j=1}^{N} \alpha_{t-1}(j)} \\
& =\frac{\sum_{j=1}^{N} \alpha_{t}(j)}{\sum_{j=1}^{N} \alpha_{t-1}(j)}
\end{aligned}
$$

5. (20 points) Recall that Baum's auxiliary can be written as

$$
Q(\lambda, \bar{\lambda})=\sum_{Q} P(Q \mid O, \lambda) \ln P(O, Q \mid \bar{\lambda})
$$

and that the part related to the observation pdf can be simplified to

$$
Q_{b}(\lambda, \bar{\lambda})=\sum_{t=1}^{T} \sum_{i=1}^{N} \gamma_{t}(i) \ln \bar{b}_{i}\left(o_{t}\right)
$$

where the terms are defined as

$$
\begin{aligned}
\gamma_{t}(i) & =P\left(q_{t}=i \mid O, \lambda\right) \\
\bar{b}_{i}\left(o_{t}\right) & =P\left(o_{t}=o_{t} \mid q_{t}=i, \bar{\lambda}\right)
\end{aligned}
$$

Suppose that we have a sequence of non-negative scalar observations, $O=\left[o_{1}, \ldots, o_{T}\right]$, modeled by exponential probability density functions:

$$
\bar{b}_{i}\left(o_{t}\right)= \begin{cases}\frac{1}{\bar{\mu}_{i}} \exp \left(-o_{t} / \bar{\mu}_{i}\right) & o_{t} \geq 0 \\ 0 & o_{t}<0\end{cases}
$$

where $\bar{\mu}_{i}$ is the state-dependent mean. The exponential pdf is only well defined if $\mu_{i} \geq 0$. We can force $\bar{\mu}_{i}$ to be non-negative by maximing a Lagrangian term of the form

$$
\mathcal{L}(\bar{\lambda})=Q_{b}(\lambda, \bar{\lambda})-\sum_{i=1}^{N} \kappa_{i} \bar{\mu}_{i}
$$

Simplify $\mathcal{L}(\bar{\lambda})$ so that it is a function of only $\gamma_{t}(i), o_{t}, \bar{\mu}_{i}$, and κ_{i} for $1 \leq t \leq T, 1 \leq i \leq N$.

Solution: This looks complicated, but after a bit of staring, we realize that it is only asking us to take the logarithm of an exponential pdf. The result is

$$
\mathcal{L}(\bar{\lambda})=\sum_{t=1}^{T} \sum_{i=1}^{N} \gamma_{t}(i)\left(-\ln \bar{\mu}_{i}-\frac{o_{t}}{\bar{\mu}_{i}}\right)-\sum_{i=1}^{N} \kappa_{i} \bar{\mu}_{i}
$$

