ECE 537 Exam 2

UNIVERSITY OF ILLINOIS
Department of Electrical and Computer Engineering
October 24, 2022

- This is a closed-book exam.
- You are allowed to bring one 8.5x11 sheet of handwritten notes (front and back).
- No calculators are allowed. Please do not simplify explicit numerical expressions.
- There are 100 points in the exam. Points for each problem are specified by the problem number.

Name: __

NetID: ___
Possibly Useful Charts and Formulas

Dynamic Time Warping

\[A_{i,k} = \max (A_{i-1,k}, A_{i,k-1}, a_{i,k} + A_{i-1,k-1}) \]

Linear Prediction

\[s[n] = G e[n] + \sum_{m=1}^{p} a_{m} s[n-m] = h[n] * x[n] \]

\[H(z) = \frac{G}{1 - \sum_{m=1}^{N} a_{m} z^{-m}} = \frac{G}{\prod_{k=1}^{N} (1 - p_{k} z^{-1})} \]

\[\mathcal{E} = \sum_{n=0}^{N-1} e^{2}[n] = \sum_{n=0}^{N-1} \left(s[n] - \sum_{m=1}^{p} a_{m} s[n-m] \right)^{2} \]

\[0 = \sum_{n=0}^{N-1} \left(s[n] - \sum_{m=1}^{p} a_{m} s[n-m] \right) s[n-k], \quad 1 \leq k \leq p \]

\[\bar{c} = \Phi \bar{a} \]

Hidden Markov Models

\[\alpha_{t}(j) = \sum_{i=1}^{N} \alpha_{t-1}(i) a_{i,j} b_{j}(\bar{o}_{t}) \quad 1 \leq j \leq N, \quad 2 \leq t \leq T \]

\[\beta_{t}(i) = \sum_{j=1}^{N} a_{i,j} b_{j}(\bar{o}_{t+1}) \beta_{t+1}(j) \quad 1 \leq i \leq N, \quad 1 \leq t \leq T - 1 \]

\[\gamma_{t}(i) = \frac{\alpha_{t}(i) \beta_{t}(i)}{\sum_{k=1}^{N} \alpha_{t}(k) \beta_{t}(k)} \]

\[\xi_{t}(i,j) = \frac{\alpha_{t}(i) a_{i,j} b_{j}(\bar{o}_{t+1}) \beta_{t+1}(j)}{\sum_{k=1}^{N} \sum_{\ell=1}^{N} \alpha_{t}(k) a_{k,\ell} b_{\ell}(\bar{o}_{t+1}) \beta_{t+1}(\ell)} \]

\[\tilde{\alpha}_{t}(j) = \sum_{i=1}^{N} \tilde{\alpha}_{t-1}(i) a_{i,j} b_{j}(\tilde{x}_{t}) \]

\[c_{t} = \sum_{j=1}^{N} \tilde{\alpha}_{t}(j) \]

\[\hat{\alpha}_{t}(j) = \frac{1}{g_{t}} \tilde{\alpha}_{t}(j) \]

\[\tilde{\alpha}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_{t}(i,j)}{\sum_{j=1}^{N} \sum_{t=1}^{T-1} \xi_{t}(i,j)} \]

\[\tilde{U}_{i} = \frac{\sum_{t=1}^{T} \gamma_{t}(i) (\bar{o}_{t} - \bar{\mu}_{i})(\bar{x}_{t} - \bar{\mu}_{i})^{T}}{\sum_{t=1}^{T} \gamma_{t}(i)} \]

\[\bar{\mu}_{i} = \frac{\sum_{t=1}^{T} \gamma_{t}(i) \bar{o}_{t}}{\sum_{t=1}^{T} \gamma_{t}(i)} \]
1. (20 points) Consider using dynamic time warping DTW to align two utterances, each of which has only two (2) frames. Let a_{ij} be the similarity between the ith frame of utterance 1 and the jth frame of utterance 2. DTW finds an optimal sequence of alignments, $I = [i(1) = 0, \ldots, i(T) = 2], J = [j(1) = 0, \ldots, j(T) = 2]$, according to

$$I^*, J^*, T^* = \arg \max_T \sum_{t=1}^{T} S(i(t-1), i(t), j(t-1), j(t)),$$

where

$$S(i(t-1), i(t), j(t-1), j(t)) = \begin{cases}
0 & i(t) = i(t-1), j(t) = j(t-1) + 1 \\
0 & i(t) = i(t-1) + 1, j(t) = j(t-1) \\
a_{i(t),j(t)} & i(t) = i(t-1) + 1, j(t) = j(t-1) + 1 \\
-\infty & \text{otherwise}
\end{cases}$$

Under what circumstances would this method prefer to align frame 2 of utterance 1 with frame 1 of utterance 2?

\begin{mdframed}
\textbf{Solution:} This method will align frame 2 of utterance 1 with frame 1 of utterance 2 only if there is a path that enters $a_{1,2}$ diagonally that has a higher score than either of the other two possible paths. Since there are only two frames in total, the path that enters $a_{1,2}$ diagonally has no other diagonal steps, so this path will be chosen only if

$$a_{1,2} > a_{1,1} + a_{2,2}$$

and

$$a_{1,2} > a_{2,1}$$
\end{mdframed}
2. (20 points) Suppose we want to predict the \(n^{th} \) sample of a speech waveform from two other samples, \(s[n-P] \) and \(s[n-Q] \), thus
\[
e[n] = s[n] - a_P s[n-P] - a_Q s[n-Q]
\]
and we wish to find the values of \(a_P \) and \(a_Q \) that minimize
\[
\mathcal{E} = \sum_{n=0}^{N-1} (e[n])^2
\]
What values of \(a_P \) and \(a_Q \) minimize \(\mathcal{E} \)? If you write your answer in terms of any other vectors, matrices, or covariance functions, be sure to define them.

Solution: By the principle of orthogonality, \(\mathcal{E} \) is minimized if and only if
\[
\sum_{n=0}^{N-1} e[n] s[n-P] = 0
\]
\[
\sum_{n=0}^{N-1} e[n] s[n-Q] = 0
\]
Substituting in the definition of \(e[n] \), we find that \(\mathcal{E} \) is minimized by
\[
\begin{bmatrix} a_P \\ a_Q \end{bmatrix} = \Phi^{-1} \vec{c},
\]
where
\[
\Phi = \begin{bmatrix} \phi(P,P) & \phi(P,Q) \\ \phi(Q,P) & \phi(Q,Q) \end{bmatrix}, \quad \vec{c} = \begin{bmatrix} \phi(0,P) \\ \phi(0,Q) \end{bmatrix},
\]
and
\[
\phi(m,k) = \sum_{n=0}^{N-1} d[n-m]d[n-k]
\]
3. (20 points) Consider an LPC-based speech synthesizer with no pitch prediction; thus the speech signal $s_k[n]$ is generated from an excitation signal $e_k[n]$ using only

$$s_k[n] = e_k[n] + \sum_{m=1}^{p} a_m s_k[n-m],$$ \hspace{1cm} (1)$$

where a_m are the linear prediction coefficients. Note that Eq. (1) can also be written as

$$S_k(z) = \frac{1}{1 - P(z)} E_k(z)$$

$$P(z) = \sum_{m=1}^{p} a_m z^{-m}$$

Suppose that we wish to exhaustively test K different candidate excitations, $e_k[n]$, for $1 \leq k \leq K$. We want to choose the excitation that minimizes the perceptually weighted error, \mathcal{E}_k, defined as

$$\mathcal{E}_k = \sum_{n=0}^{N-1} y_k^2[n],$$

where

$$Y_k(z) = \frac{1 - P(z)}{1 - P(z/\alpha)} S_k(z),$$

Demonstrate that $y_k[n]$ can be generated from $e_k[n]$ using only p multiplications per sample.

Solution:

$$Y_k(z) = \frac{1}{1 - P(z/\alpha)} E_k(z)$$

$$P(z/\alpha) = \sum_{m=1}^{p} a_m \alpha^m z^{-m}$$

Therefore, if we compute the coefficients $c_m = \alpha^m a_m$ once per frame, we can then compute all of the frame’s N samples using

$$y_k[n] = e_k[n] + \sum_{m=1}^{p} c_m y_k[n-m]$$
4. (20 points) The scaling constant, in the standard scaled-forward algorithm, can be interpreted as

\[c_t = P(o_t | o_1, \ldots, o_{t-1}, \lambda) \]

This is an intriguing quantity; it suggests that we are predicting the next spectrum, given the previous spectra. Suppose that somebody else has provided you with a table of the non-scaled forward probabilities for a particular waveform,

\[\alpha_t(i) = P(q_t = i, o_1, \ldots, o_t | \lambda) \]

Is it possible to compute \(c_T \) for the last frame without computing the scaled forward algorithm for all time steps? In other words, can you come up with a formula for \(c_T \) in terms of \(\alpha_t(i), a_{i,j}, \) and \(b_i(k), \) for some appropriate values of \(i, j, t, k, \) but without computing the scaled forward algorithm for all time steps?

Solution: First, we want a probability conditioned on \(o_1, \ldots, o_{t-1}. \) We can get that by normalizing \(\alpha_{t-1}(i): \)

\[
P(q_{t-1} = i | o_1, \ldots, o_{t-1}, \lambda) = \frac{\alpha_{t-1}(i)}{\sum_{j=1}^{N} \alpha_{t-1}(j)}
\]

Then we can find the probability of \(o_t \) given \(o_1, \ldots, o_{t-1} \) by summing over all of the ways in which \(o_t \) could have been made:

\[
P(o_t | o_1, \ldots, o_{t-1}, \lambda) = \sum_{i=1}^{N} \sum_{j=1}^{N} P(q_{t-1} = i | o_1, \ldots, o_{t-1}, \lambda) a_{i,j} b_j(o_t)
\]

\[
= \frac{\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{t-1}(i) a_{i,j} b_j(o_t)}{\sum_{j=1}^{N} \alpha_{t-1}(j)}
\]

\[
= \frac{\sum_{j=1}^{N} \alpha_t(j)}{\sum_{j=1}^{N} \alpha_{t-1}(j)}
\]
5. (20 points) Recall that Baum’s auxiliary can be written as

\[Q(\lambda, \bar{\lambda}) = \sum_Q P(Q|O, \lambda) \ln P(O, Q|\bar{\lambda}), \]

and that the part related to the observation pdf can be simplified to

\[Q_b(\lambda, \bar{\lambda}) = \sum_{t=1}^{T} \sum_{i=1}^{N} \gamma_t(i) \ln \bar{b}_i(o_t), \]

where the terms are defined as

\[\gamma_t(i) = P(q_t = i|O, \lambda) \]
\[\bar{b}_i(o_t) = P(o_t = a_t|q_t = i, \bar{\lambda}) \]

Suppose that we have a sequence of non-negative scalar observations, \(O = [o_1, \ldots, o_T] \), modeled by exponential probability density functions:

\[\bar{b}_i(o_t) = \begin{cases} \frac{1}{\bar{\mu}_i} \exp \left(-\frac{o_t}{\bar{\mu}_i} \right) & o_t \geq 0 \\ 0 & o_t < 0 \end{cases} \]

where \(\bar{\mu}_i \) is the state-dependent mean. The exponential pdf is only well defined if \(\mu_i \geq 0 \). We can force \(\bar{\mu}_i \) to be non-negative by maximizing a Lagrangian term of the form

\[\mathcal{L}(\bar{\lambda}) = Q_b(\lambda, \bar{\lambda}) - \sum_{i=1}^{N} \kappa_i \bar{\mu}_i \]

Simplify \(\mathcal{L}(\bar{\lambda}) \) so that it is a function of only \(\gamma_t(i), o_t, \bar{\mu}_i \), and \(\kappa_i \) for \(1 \leq t \leq T, 1 \leq i \leq N \).

Solution: This looks complicated, but after a bit of staring, we realize that it is only asking us to take the logarithm of an exponential pdf. The result is

\[\mathcal{L}(\bar{\lambda}) = \sum_{t=1}^{T} \sum_{i=1}^{N} \gamma_t(i) \left(-\ln \bar{\mu}_i - \frac{o_t}{\bar{\mu}_i} \right) - \sum_{i=1}^{N} \kappa_i \bar{\mu}_i \]