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Possibly Useful Charts and Formulas

Dynamic Time Warping

Ai,k = max (Ai−1,k, Ai,k−1, ai,k +Ai−1,k−1)

Linear Prediction

s[n] = Ge[n] +

p∑
m=1

ams[n−m] = h[n] ∗ x[n]

H(z) =
G

1−
∑N
m=1 amz

−m
=

G∏N
k=1 (1− pkz−1)

E =

N−1∑
n=0

e2[n] =

N−1∑
n=0

(
s[n]−

p∑
m=1

ams[n−m]

)2

0 =

N−1∑
n=0

(
s[n]−

p∑
m=1

ams[n−m]

)
s[n− k], 1 ≤ k ≤ p

~c = Φ~a

Hidden Markov Models

αt(j) =

N∑
i=1

αt−1(i)aijbj(~ot), 1 ≤ j ≤ N, 2 ≤ t ≤ T

βt(i) =

N∑
j=1

aijbj(~ot+1)βt+1(j), 1 ≤ i ≤ N, 1 ≤ t ≤ T − 1

γt(i) =
αt(i)βt(i)∑N
k=1 αt(k)βt(k)

ξt(i, j) =
αt(i)aijbj(~ot+1)βt+1(j)∑N

k=1

∑N
`=1 αt(k)ak`b`(~ot+1)βt+1(`)

α̃t(j) =

N∑
i=1

α̂t−1(i)aijbj(~xt)

ct =

N∑
j=1

α̃t(j)

α̂t(j) =
1

gt
α̃t(j)

āij =

∑T−1
t=1 ξt(i, j)∑N

j=1

∑T−1
t=1 ξt(i, j)

Ūi =

∑T
t=1 γt(i)(~ot − ~µi)(~xt − ~µi)T∑T

t=1 γt(i)

µ̄i =

∑T
t=1 γt(i)~ot∑T
t=1 γt(i)
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1. (20 points) Consider using dynamic time warping DTW to align two utterances, each of which has only
two (2) frames. Let ai,j be the similarity between the ith frame of utterance 1 and the jth frame of
utterance 2. DTW finds an optimal sequence of alignments, I = [i(1) = 0, . . . , i(T ) = 2], J = [j(1) =
0, . . . , j(T ) = 2], according to

I∗, J∗, T ∗ = arg max

T∑
t=1

S(i(t− 1), i(t), j(t− 1), j(t)),

where

S(i(t− 1), i(t), j(t− 1), j(t)) =


0 i(t) = i(t− 1), j(t) = j(t− 1) + 1

0 i(t) = i(t− 1) + 1, j(t) = j(t− 1)

ai(t),j(t) i(t) = i(t− 1) + 1, j(t) = j(t− 1) + 1

−∞ otherwise

Under what circumstances would this method prefer to align frame 2 of utterance 1 with frame 1 of
utterance 2?

Solution: This method will align frame 2 of utterance 1 with frame 1 of utterance 2 only if there
is a path that enters a1,2 diagonally that has a higher score than either of the other two possible
paths. Since there are only two frames in total, the path that enters a1,2 diagonally has no other
diagonal steps, so this path will be chosen only if

a1,2 > a1,1 + a2,2

and
a1,2 > a2,1
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2. (20 points) Suppose we want to predict the nth sample of a speech waveform from two other samples,
s[n− P ] and s[n−Q], thus

e[n] = s[n]− aP s[n− P ]− aQs[n−Q]

and we wish to find the values of aP and aQ that minimize

E =

N−1∑
n=0

(e[n])
2

What values of aP and aQ minimize E? If you write your answer in terms of any other vectors, matrices,
or covariance functions, be sure to define them.

Solution: By the principle of orthogonality, E is minimized if and only if

N−1∑
n=0

e[n]s[n− P ] = 0

N−1∑
n=0

e[n]s[n−Q] = 0

Substituting in the definition of e[n], we find that E is minimized by[
aP
aQ

]
= Φ−1~c,

where

Φ =

[
φ(P, P ) φ(P,Q)
φ(Q,P ) φ(Q,Q)

]
, ~c =

[
φ(0, P )
φ(0, Q)

]
,

and

φ(m, k) =

N−1∑
n=0

d[n−m]d[n− k]
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3. (20 points) Consider an LPC-based speech synthesizer with no pitch prediction; thus the speech signal
sk[n] is generated from an excitation signal ek[n] using only

sk[n] = ek[n] +

p∑
m=1

amsk[n−m], (1)

where am are the linear prediction coefficients. Note that Eq. (1) can also be written as

Sk(z) =
1

1− P (z)
Ek(z)

P (z) =

p∑
m=1

amz
−m

Suppose that we wish to exhaustively test K different candidate excitations, ek[n], for 1 ≤ k ≤ K. We
want to choose the excitation that minimizes the perceptually weighted error, Ek, defined as

Ek =
N−1∑
n=0

y2
k[n],

where

Yk(z) =
1− P (z)

1− P (z/α)
Sk(z),

Demonstrate that yk[n] can be generated from ek[n] using only p multiplications per sample.

Solution:

Yk(z) =
1

1− P (z/α)
Ek(z)

P (z/α) =

p∑
m=1

amα
mz−m

Therefore, if we compute the coefficients cm = αmam once per frame, we can then compute all of
the frame’s N samples using

yk[n] = ek[n] +

p∑
m=1

cmyk[n−m]
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4. (20 points) The scaling constant, in the standard scaled-forward algorithm, can be interpreted as

ct = P (ot|o1, . . . , ot−1, λ)

This is an intriguing quantity; it suggests that we are predicting the next spectrum, given the previous
spectra. Suppose that somebody else has provided you with a table of the non-scaled forward probabilities
for a particular waveform,

αt(i) = P (qt = i, o1, . . . , ot|λ)

Is it possible to compute cT for the last frame without computing the scaled forward algorithm for all
time steps? In other words, can you come up with a formula for cT in terms of αt(i), ai,j , and bi(k),
for some appropriate values of i, j, t, k, but without computing the scaled forward algorithm for all time
steps?

Solution: First, we want a probability conditioned on o1, . . . , ot−1. We can get that by normalizing
αt−1(i):

P (qt−1 = i|o1, . . . , ot−1, λ) =
αt−1(i)∑N
j=1 αt−1(j)

Then we can find the probability of ot given o1, . . . , ot−1 by summing over all of the ways in which
ot could have been made:

P (ot|o1, . . . , ot−1, λ) =

N∑
i=1

N∑
j=1

P (qt−1 = i|o1, . . . , ot−1, λ)aijbj(ot)

=

∑N
i=1

∑N
j=1 αt−1(i)aijbj(ot)∑N
j=1 αt−1(j)

=

∑N
j=1 αt(j)∑N
j=1 αt−1(j)
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5. (20 points) Recall that Baum’s auxiliary can be written as

Q(λ, λ̄) =
∑
Q

P (Q|O, λ) lnP (O,Q|λ̄),

and that the part related to the observation pdf can be simplified to

Qb(λ, λ̄) =

T∑
t=1

N∑
i=1

γt(i) ln b̄i(ot),

where the terms are defined as

γt(i) = P (qt = i|O, λ)

b̄i(ot) = P (ot = ot|qt = i, λ̄)

Suppose that we have a sequence of non-negative scalar observations, O = [o1, . . . , oT ], modeled by
exponential probability density functions:

b̄i(ot) =

{
1
µ̄i

exp (−ot/µ̄i) ot ≥ 0

0 ot < 0

where µ̄i is the state-dependent mean. The exponential pdf is only well defined if µi ≥ 0. We can force
µ̄i to be non-negative by maximing a Lagrangian term of the form

L(λ̄) = Qb(λ, λ̄)−
N∑
i=1

κiµ̄i

Simplify L(λ̄) so that it is a function of only γt(i), ot, µ̄i, and κi for 1 ≤ t ≤ T , 1 ≤ i ≤ N .

Solution: This looks complicated, but after a bit of staring, we realize that it is only asking us to
take the logarithm of an exponential pdf. The result is

L(λ̄) =

T∑
t=1

N∑
i=1

γt(i)

(
− ln µ̄i −

ot
µ̄i

)
−

N∑
i=1

κiµ̄i
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