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Possibly Useful Charts and Formulas

Dynamic Time Warping

Ai,k = max (Ai+1,k, Ai,k+1, ai,k +Ai+1,k+1)

Linear Prediction

s[n] = Ge[n] +

p∑
m=1

ams[n−m] = h[n] ∗ x[n]

H(z) =
G

1−
∑N
m=1 amz

−m
=

G∏N
k=1 (1− pkz−1)

E =

N−1∑
n=0

e2[n] =

N−1∑
n=0

(
s[n]−

p∑
m=1

ams[n−m]

)2

0 =

N−1∑
n=0

(
s[n]−

p∑
m=1

ams[n−m]

)
s[n− k], 1 ≤ k ≤ p

~c = Φ~a

Hidden Markov Models

αt(j) =

N∑
i=1

αt−1(i)aijbj(~ot), 1 ≤ j ≤ N, 2 ≤ t ≤ T

βt(i) =

N∑
j=1

aijbj(~ot+1)βt+1(j), 1 ≤ i ≤ N, 1 ≤ t ≤ T − 1

γt(i) =
αt(i)βt(i)∑N
k=1 αt(k)βt(k)

ξt(i, j) =
αt(i)aijbj(~ot+1)βt+1(j)∑N

k=1

∑N
`=1 αt(k)ak`b`(~ot+1)βt+1(`)

α̃t(j) =

N∑
i=1

α̂t−1(i)aijbj(~xt)

ct =

N∑
j=1

α̃t(j)

α̂t(j) =
1

gt
α̃t(j)

āij =

∑T−1
t=1 ξt(i, j)∑N

j=1

∑T−1
t=1 ξt(i, j)

Ūi =

∑T
t=1 γt(i)(~ot − ~µi)(~xt − ~µi)T∑T

t=1 γt(i)

µ̄i =

∑T
t=1 γt(i)~ot∑T
t=1 γt(i)
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1. (20 points) Consider using dynamic time warping DTW to align two utterances, each of which has only
two (2) frames. Let ai,j be the similarity between the ith frame of utterance 1 and the jth frame of
utterance 2. DTW finds an optimal sequence of alignments, I = [i(1) = 0, . . . , i(T ) = 2], J = [j(1) =
0, . . . , j(T ) = 2], according to

I∗, J∗, T ∗ = arg max

T∑
t=1

S(i(t− 1), i(t), j(t− 1), j(t)),

where

S(i(t− 1), i(t), j(t− 1), j(t)) =


0 i(t) = i(t− 1), j(t) = j(t− 1) + 1

0 i(t) = i(t− 1) + 1, j(t) = j(t− 1)

ai(t),j(t) i(t) = i(t− 1) + 1, j(t) = j(t− 1) + 1

−∞ otherwise

Under what circumstances would this method prefer to align frame 2 of utterance 1 with frame 1 of
utterance 2?
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2. (20 points) Suppose we want to predict the nth sample of a speech waveform from two other samples,
s[n− P ] and s[n−Q], thus

e[n] = s[n]− aP s[n− P ]− aQs[n−Q]

and we wish to find the values of aP and aQ that minimize

E =

N−1∑
n=0

(e[n])
2

What values of aP and aQ minimize E? If you write your answer in terms of any other vectors, matrices,
or covariance functions, be sure to define them.
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3. (20 points) Consider an LPC-based speech synthesizer with no pitch prediction; thus the speech signal
sk[n] is generated from an excitation signal ek[n] using only

sk[n] = ek[n] +

p∑
m=1

amsk[n−m], (1)

where am are the linear prediction coefficients. Note that Eq. (1) can also be written as

Sk(z) =
1

1− P (z)
Ek(z)

P (z) =

p∑
m=1

amz
−m

Suppose that we wish to exhaustively test K different candidate excitations, ek[n], for 1 ≤ k ≤ K. We
want to choose the excitation that minimizes the perceptually weighted error, Ek, defined as

Ek =
N−1∑
n=0

y2
k[n],

where

Yk(z) =
1− P (z)

1− P (z/α)
Sk(z),

Demonstrate that yk[n] can be generated from ek[n] using only p multiplications per sample.
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4. (20 points) The scaling constant, in the standard scaled-forward algorithm, can be interpreted as

ct = P (ot|o1, . . . , ot−1, λ)

This is an intriguing quantity; it suggests that we are predicting the next spectrum, given the previous
spectra. Suppose that somebody else has provided you with a table of the non-scaled forward probabilities
for a particular waveform,

αt(i) = P (qt = i, o1, . . . , ot|λ)

Is it possible to compute cT for the last frame without computing the scaled forward algorithm for all
time steps? In other words, can you come up with a formula for cT in terms of αt(i), ai,j , and bi(k),
for some appropriate values of i, j, t, k, but without computing the scaled forward algorithm for all time
steps?
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5. (20 points) Recall that Baum’s auxiliary can be written as

Q(λ, λ̄) =
∑
Q

P (Q|O, λ) lnP (O,Q|λ̄),

and that the part related to the observation pdf can be simplified to

Qb(λ, λ̄) =

T∑
t=1

N∑
i=1

γt(i) ln b̄i(ot),

where the terms are defined as

γt(i) = P (qt = i|O, λ)

b̄i(ot) = P (ot = ot|qt = i, λ̄)

Suppose that we have a sequence of non-negative scalar observations, O = [o1, . . . , oT ], modeled by
exponential probability density functions:

b̄i(ot) =

{
1
µ̄i

exp (−ot/µ̄i) ot ≥ 0

0 ot < 0

where µ̄i is the state-dependent mean. The exponential pdf is only well defined if µi ≥ 0. We can force
µ̄i to be non-negative by maximing a Lagrangian term of the form

L(λ̄) = Qb(λ, λ̄)−
N∑
i=1

κiµ̄i

Simplify L(λ̄) so that it is a function of only γt(i), ot, µ̄i, and κi for 1 ≤ t ≤ T , 1 ≤ i ≤ N .

Page 7


