ECE 537 Exam 2
UNIVERSITY OF ILLINOIS
Department of Electrical and Computer Engineering
October 24, 2022

- This is a closed-book exam.
- You are allowed to bring one 8.5x11 sheet of handwritten notes (front and back).
- No calculators are allowed. Please do not simplify explicit numerical expressions.
- There are 100 points in the exam. Points for each problem are specified by the problem number.

Name:

NetID:
Possibly Useful Charts and Formulas

Dynamic Time Warping

$$A_{i,k} = \max (A_{i+1,k}, A_{i,k+1}, a_{i,k} + A_{i+1,k+1})$$

Linear Prediction

$$s[n] = Ge[n] + \sum_{m=1}^{p} a_m s[n-m] = h[n] \ast x[n]$$

$$H(z) = \frac{G}{1 - \sum_{m=1}^{N} a_m z^{-m}} = \frac{G}{\prod_{k=1}^{N} (1 - p_k z^{-1})}$$

$$\mathcal{E} = \sum_{n=0}^{N-1} e^2[n] = \sum_{n=0}^{N-1} \left(s[n] - \sum_{m=1}^{p} a_m s[n-m] \right)^2$$

$$0 = \sum_{n=0}^{N-1} \left(s[n] - \sum_{m=1}^{p} a_m s[n-m] \right) s[n-k], \quad 1 \leq k \leq p$$

$$\bar{e} = \Phi \hat{a}$$

Hidden Markov Models

$$\alpha_t(j) = \sum_{i=1}^{N} \alpha_{t-1}(i) a_{ij} b_j(\tilde{a}_t), \quad 1 \leq j \leq N, \quad 2 \leq t \leq T$$

$$\beta_t(i) = \sum_{j=1}^{N} a_{ij} b_j(\bar{a}_{t+1}) \beta_{t+1}(j), \quad 1 \leq i \leq N, \quad 1 \leq t \leq T - 1$$

$$\gamma_t(i) = \frac{\alpha_t(i) \beta_t(i)}{\sum_{k=1}^{N} \alpha_t(k) \beta_t(k)}$$

$$\xi_t(i,j) = \frac{\alpha_t(i) a_{ij} b_j(\bar{a}_{t+1}) \beta_{t+1}(j)}{\sum_{k=1}^{N} \sum_{\ell=1}^{N} \alpha_t(k) a_{k\ell} b_{\ell}(\bar{a}_{t+1}) \beta_{t+1}(\ell)}$$

$$\tilde{\alpha}_t(j) = \sum_{i=1}^{N} \hat{\alpha}_{t-1}(i) a_{ij} b_j(\tilde{x}_t)$$

$$c_t = \sum_{j=1}^{N} \tilde{\alpha}_t(j)$$

$$\hat{\alpha}_t(j) = \frac{1}{c_t} \tilde{\alpha}_t(j)$$

$$\tilde{\alpha}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{j=1}^{N} \sum_{t=1}^{T-1} \xi_t(i,j)}$$

$$\bar{U}_i = \frac{\sum_{t=1}^{T} \gamma_t(i) (\bar{\alpha}_t - \bar{\mu}_i)(\bar{x}_t - \bar{\mu}_i)^T}{\sum_{t=1}^{T} \gamma_t(i)}$$

$$\bar{\mu}_i = \frac{\sum_{t=1}^{T} \gamma_t(i) \bar{\alpha}_t}{\sum_{t=1}^{T} \gamma_t(i)}$$

Page 2
1. (20 points) Consider using dynamic time warping DTW to align two utterances, each of which has only two (2) frames. Let $a_{i,j}$ be the similarity between the i^{th} frame of utterance 1 and the j^{th} frame of utterance 2. DTW finds an optimal sequence of alignments, $I = [i(1) = 0, \ldots, i(T) = 2]$, $J = [j(1) = 0, \ldots, j(T) = 2]$, according to

$$I^*, J^*, T^* = \arg \max_{I,J,T} \sum_{t=1}^{T} S(i(t - 1), i(t), j(t - 1), j(t)),$$

where

$$S(i(t - 1), i(t), j(t - 1), j(t)) = \begin{cases}
0 & i(t) = i(t - 1), j(t) = j(t - 1) + 1 \\
0 & i(t) = i(t - 1) + 1, j(t) = j(t - 1) \\
0 & a_{i(t), j(t)} \\
-\infty & \text{otherwise}
\end{cases}$$

Under what circumstances would this method prefer to align frame 2 of utterance 1 with frame 1 of utterance 2?
2. (20 points) Suppose we want to predict the n^{th} sample of a speech waveform from two other samples, $s[n - P]$ and $s[n - Q]$, thus

$$e[n] = s[n] - a_P s[n - P] - a_Q s[n - Q]$$

and we wish to find the values of a_P and a_Q that minimize

$$\mathcal{E} = \sum_{n=0}^{N-1} (e[n])^2$$

What values of a_P and a_Q minimize \mathcal{E}? If you write your answer in terms of any other vectors, matrices, or covariance functions, be sure to define them.
3. (20 points) Consider an LPC-based speech synthesizer with no pitch prediction; thus the speech signal \(s_k[n] \) is generated from an excitation signal \(e_k[n] \) using only

\[
s_k[n] = e_k[n] + \sum_{m=1}^{p} a_m s_k[n - m], \tag{1}
\]

where \(a_m \) are the linear prediction coefficients. Note that Eq. (1) can also be written as

\[
S_k(z) = \frac{1}{1 - P(z)} E_k(z)
\]

\[
P(z) = \sum_{m=1}^{p} a_m z^{-m}
\]

Suppose that we wish to exhaustively test \(K \) different candidate excitations, \(e_k[n] \), for \(1 \leq k \leq K \). We want to choose the excitation that minimizes the perceptually weighted error, \(\mathcal{E}_k \), defined as

\[
\mathcal{E}_k = \sum_{n=0}^{N-1} y_k^2[n],
\]

where

\[
Y_k(z) = \frac{1 - P(z)}{1 - P(z/\alpha)} S_k(z),
\]

Demonstrate that \(y_k[n] \) can be generated from \(e_k[n] \) using only \(p \) multiplications per sample.
4. (20 points) The scaling constant, in the standard scaled-forward algorithm, can be interpreted as

\[c_t = P(o_t|o_1,\ldots,o_{t-1},\lambda) \]

This is an intriguing quantity; it suggests that we are predicting the next spectrum, given the previous spectra. Suppose that somebody else has provided you with a table of the non-scaled forward probabilities for a particular waveform,

\[\alpha_t(i) = P(q_t = i, o_1,\ldots,o_t|\lambda) \]

Is it possible to compute \(c_T \) for the last frame without computing the scaled forward algorithm for all time steps? In other words, can you come up with a formula for \(c_T \) in terms of \(\alpha_t(i) \), \(a_{i,j} \), and \(b_i(k) \), for some appropriate values of \(i, j, t, k \), but without computing the scaled forward algorithm for all time steps?
5. (20 points) Recall that Baum’s auxiliary can be written as

\[Q(\lambda, \bar{\lambda}) = \sum_Q P(Q|O, \lambda) \ln P(O, Q|\bar{\lambda}), \]

and that the part related to the observation pdf can be simplified to

\[Q_b(\lambda, \bar{\lambda}) = \sum_{t=1}^{T} \sum_{i=1}^{N} \gamma_t(i) \ln \bar{b}_i(o_t), \]

where the terms are defined as

\[\gamma_t(i) = P(q_t = i|O, \lambda) \]
\[\bar{b}_i(o_t) = P(o_t = o_t|q_t = i, \bar{\lambda}) \]

Suppose that we have a sequence of non-negative scalar observations, \(O = [o_1, \ldots, o_T] \), modeled by exponential probability density functions:

\[\bar{b}_i(o_t) = \begin{cases} \frac{1}{\bar{\mu}_i} \exp \left(-\frac{o_t}{\bar{\mu}_i} \right) & o_t \geq 0 \\ 0 & o_t < 0 \end{cases} \]

where \(\bar{\mu}_i \) is the state-dependent mean. The exponential pdf is only well defined if \(\mu_i \geq 0 \). We can force \(\bar{\mu}_i \) to be non-negative by maximizing a Lagrangian term of the form

\[\mathcal{L}(\bar{\lambda}) = Q_b(\lambda, \bar{\lambda}) - \sum_{i=1}^{N} \kappa_i \bar{\mu}_i \]

Simplify \(\mathcal{L}(\bar{\lambda}) \) so that it is a function of only \(\gamma_t(i), o_t, \bar{\mu}_i \), and \(\kappa_i \) for \(1 \leq t \leq T, 1 \leq i \leq N \).