ECE 537 Exam 2
 UNIVERSITY OF ILLINOIS
 Department of Electrical and Computer Engineering

October 24, 2022

- This is a closed-book exam.
- You are allowed to bring one 8.5×11 sheet of handwritten notes (front and back).
- No calculators are allowed. Please do not simplify explicit numerical expressions.
- There are 100 points in the exam. Points for each problem are specified by the problem number.

Name: \qquad

NetID:

Possibly Useful Charts and Formulas

Dynamic Time Warping

$$
A_{i, k}=\max \left(A_{i+1, k}, A_{i, k+1}, a_{i, k}+A_{i+1, k+1}\right)
$$

Linear Prediction

$$
\begin{gathered}
s[n]=G e[n]+\sum_{m=1}^{p} a_{m} s[n-m]=h[n] * x[n] \\
H(z)=\frac{G}{1-\sum_{m=1}^{N} a_{m} z^{-m}}=\frac{G}{\prod_{k=1}^{N}\left(1-p_{k} z^{-1}\right)} \\
\mathcal{E}=\sum_{n=0}^{N-1} e^{2}[n]=\sum_{n=0}^{N-1}\left(s[n]-\sum_{m=1}^{p} a_{m} s[n-m]\right)^{2} \\
0=\sum_{n=0}^{N-1}\left(s[n]-\sum_{m=1}^{p} a_{m} s[n-m]\right) s[n-k], \quad 1 \leq k \leq p \\
\vec{c}=\Phi \vec{a}
\end{gathered}
$$

Hidden Markov Models

$$
\begin{gathered}
\alpha_{t}(j)=\sum_{i=1}^{N} \alpha_{t-1}(i) a_{i j} b_{j}\left(\vec{o}_{t}\right), \quad 1 \leq j \leq N, 2 \leq t \leq T \\
\beta_{t}(i)=\sum_{j=1}^{N} a_{i j} b_{j}\left(\vec{o}_{t+1}\right) \beta_{t+1}(j), \quad 1 \leq i \leq N, 1 \leq t \leq T-1 \\
\gamma_{t}(i)=\frac{\alpha_{t}(i) \beta_{t}(i)}{\sum_{k=1}^{N} \alpha_{t}(k) \beta_{t}(k)} \\
\xi_{t}(i, j)=\frac{\alpha_{t}(i) a_{i j} b_{j}\left(\vec{o}_{t+1}\right) \beta_{t+1}(j)}{\sum_{k=1}^{N} \sum_{\ell=1}^{N} \alpha_{t}(k) a_{k \ell} b_{\ell}\left(\partial_{t+1}\right) \beta_{t+1}(\ell)} \\
\tilde{\alpha}_{t}(j)=\sum_{i=1}^{N} \hat{\alpha}_{t-1}(i) a_{i j} b_{j}\left(\vec{x}_{t}\right) \\
c_{t}=\sum_{j=1}^{N} \tilde{\alpha}_{t}(j) \\
\hat{\alpha}_{t}(j)=\frac{1}{g_{t}} \tilde{a}_{t}(j) \\
\bar{a}_{i j}=\frac{\sum_{t=1}^{T-1} \xi_{t}(i, j)}{\sum_{j=1}^{N} \sum_{t=1}^{T-1} \xi_{t}(i, j)} \\
\bar{U}_{i}=\frac{\sum_{t=1}^{T} \gamma_{t}(i)\left(\vec{o}_{t}-\vec{\mu}_{i}\right)\left(\vec{x}_{t}-\vec{\mu}_{i}\right)^{T}}{\sum_{t=1}^{T} \gamma_{t}(i)} \\
\bar{\mu}_{i}=\frac{\sum_{t=1}^{T} \gamma_{t}(i) \vec{o}_{t}}{\sum_{t=1}^{T} \gamma_{t}(i)}
\end{gathered}
$$

1. (20 points) Consider using dynamic time warping DTW to align two utterances, each of which has only two (2) frames. Let $a_{i, j}$ be the similarity between the $i^{\text {th }}$ frame of utterance 1 and the $j^{\text {th }}$ frame of utterance 2. DTW finds an optimal sequence of alignments, $I=[i(1)=0, \ldots, i(T)=2], J=[j(1)=$ $0, \ldots, j(T)=2$], according to

$$
I^{*}, J^{*}, T^{*}=\arg \max \sum_{t=1}^{T} S(i(t-1), i(t), j(t-1), j(t))
$$

where

$$
S(i(t-1), i(t), j(t-1), j(t))= \begin{cases}0 & i(t)=i(t-1), j(t)=j(t-1)+1 \\ 0 & i(t)=i(t-1)+1, j(t)=j(t-1) \\ a_{i(t), j(t)} & i(t)=i(t-1)+1, j(t)=j(t-1)+1 \\ -\infty & \text { otherwise }\end{cases}
$$

Under what circumstances would this method prefer to align frame 2 of utterance 1 with frame 1 of utterance 2?
2. (20 points) Suppose we want to predict the $n^{\text {th }}$ sample of a speech waveform from two other samples, $s[n-P]$ and $s[n-Q]$, thus

$$
e[n]=s[n]-a_{P} s[n-P]-a_{Q} s[n-Q]
$$

and we wish to find the values of a_{P} and a_{Q} that minimize

$$
\mathcal{E}=\sum_{n=0}^{N-1}(e[n])^{2}
$$

What values of a_{P} and a_{Q} minimize \mathcal{E} ? If you write your answer in terms of any other vectors, matrices, or covariance functions, be sure to define them.
3. (20 points) Consider an LPC-based speech synthesizer with no pitch prediction; thus the speech signal $s_{k}[n]$ is generated from an excitation signal $e_{k}[n]$ using only

$$
\begin{equation*}
s_{k}[n]=e_{k}[n]+\sum_{m=1}^{p} a_{m} s_{k}[n-m], \tag{1}
\end{equation*}
$$

where a_{m} are the linear prediction coefficients. Note that Eq. (1) can also be written as

$$
\begin{aligned}
S_{k}(z) & =\frac{1}{1-P(z)} E_{k}(z) \\
P(z) & =\sum_{m=1}^{p} a_{m} z^{-m}
\end{aligned}
$$

Suppose that we wish to exhaustively test K different candidate excitations, $e_{k}[n]$, for $1 \leq k \leq K$. We want to choose the excitation that minimizes the perceptually weighted error, \mathcal{E}_{k}, defined as

$$
\mathcal{E}_{k}=\sum_{n=0}^{N-1} y_{k}^{2}[n]
$$

where

$$
Y_{k}(z)=\frac{1-P(z)}{1-P(z / \alpha)} S_{k}(z)
$$

Demonstrate that $y_{k}[n]$ can be generated from $e_{k}[n]$ using only p multiplications per sample.
4. (20 points) The scaling constant, in the standard scaled-forward algorithm, can be interpreted as

$$
c_{t}=P\left(o_{t} \mid o_{1}, \ldots, o_{t-1}, \lambda\right)
$$

This is an intriguing quantity; it suggests that we are predicting the next spectrum, given the previous spectra. Suppose that somebody else has provided you with a table of the non-scaled forward probabilities for a particular waveform,

$$
\alpha_{t}(i)=P\left(q_{t}=i, o_{1}, \ldots, o_{t} \mid \lambda\right)
$$

Is it possible to compute c_{T} for the last frame without computing the scaled forward algorithm for all time steps? In other words, can you come up with a formula for c_{T} in terms of $\alpha_{t}(i), a_{i, j}$, and $b_{i}(k)$, for some appropriate values of i, j, t, k, but without computing the scaled forward algorithm for all time steps?
5. (20 points) Recall that Baum's auxiliary can be written as

$$
Q(\lambda, \bar{\lambda})=\sum_{Q} P(Q \mid O, \lambda) \ln P(O, Q \mid \bar{\lambda})
$$

and that the part related to the observation pdf can be simplified to

$$
Q_{b}(\lambda, \bar{\lambda})=\sum_{t=1}^{T} \sum_{i=1}^{N} \gamma_{t}(i) \ln \bar{b}_{i}\left(o_{t}\right)
$$

where the terms are defined as

$$
\begin{aligned}
\gamma_{t}(i) & =P\left(q_{t}=i \mid O, \lambda\right) \\
\bar{b}_{i}\left(o_{t}\right) & =P\left(o_{t}=o_{t} \mid q_{t}=i, \bar{\lambda}\right)
\end{aligned}
$$

Suppose that we have a sequence of non-negative scalar observations, $O=\left[o_{1}, \ldots, o_{T}\right]$, modeled by exponential probability density functions:

$$
\bar{b}_{i}\left(o_{t}\right)= \begin{cases}\frac{1}{\bar{\mu}_{i}} \exp \left(-o_{t} / \bar{\mu}_{i}\right) & o_{t} \geq 0 \\ 0 & o_{t}<0\end{cases}
$$

where $\bar{\mu}_{i}$ is the state-dependent mean. The exponential pdf is only well defined if $\mu_{i} \geq 0$. We can force $\bar{\mu}_{i}$ to be non-negative by maximing a Lagrangian term of the form

$$
\mathcal{L}(\bar{\lambda})=Q_{b}(\lambda, \bar{\lambda})-\sum_{i=1}^{N} \kappa_{i} \bar{\mu}_{i}
$$

Simplify $\mathcal{L}(\bar{\lambda})$ so that it is a function of only $\gamma_{t}(i), o_{t}, \bar{\mu}_{i}$, and κ_{i} for $1 \leq t \leq T, 1 \leq i \leq N$.

