ECE 537 Exam 1
 UNIVERSITY OF ILLINOIS
 Department of Electrical and Computer Engineering

September 28, 2022

- This is a closed-book exam.
- You are allowed to bring one 8.5×11 sheet of handwritten notes (front and back).
- No calculators are allowed. Please do not simplify explicit numerical expressions.
- There are 100 points in the exam. Points for each problem are specified by the problem number.

Name: \qquad

NetID:

Possibly Useful Charts and Formulas

$$
\begin{aligned}
G(1000, L) & =\sum_{k=1}^{n} b_{k} G\left(1000, L_{k}\right) \\
b_{k} & =\left[\frac{250+\Delta f}{1000}\right] Q\left(L_{k}\right)
\end{aligned}
$$

TABLE III
Values of $G\left(L_{k}\right)$.

L	0	1	2	3	4	5	6	7	8	9
-10	0.015	0.025	0.04	0.06	0.09	0.14	0.22	0.32	0.45	0.70
0	1.00	1.40	1.90	2.51	3.40	4.43	5.70	7.08	9.00	11.2
10	13.9	17.2	21.4	26.6	32.6	39.3	47.5	57.5	69.5	82.5
20	97.5	113	131	151	173	197	222	252	287	324
30	360	405	455	505	555	615	675	740	810	890
40	975	1060	1155	1250	1360	1500	1640	1780	1920	2070
50	2200	2350	2510	2680	2880	3080	3310	3560	3820	4070
60	4350	4640	4950	5250	5560	5870	6240	6620	7020	7440
70	7950	8510	9130	9850	10600	11400	12400	13500	14600	15800
80	17100	18400	19800	21400	23100	25000	27200	29600	32200	35000
90	38000	41500	45000	49000	53000	57000	62000	67500	74000	81000
100	88000	97000	106000	116000	126000	138000	150000	164000	180000	197000
110	215000	235000	260000	288000	316000	346000	380000	418000	460000	506000
120	556000	609000	668000	732000	800000	875000	956000	1047000	1150000	1266000

Possibly Useful Charts and Formulas (cont'd)

Page 3

1. (30 points) A particular signal contains component tones at $150,300,1050$, and 1200 Hz . The levels of these four components are $70,70,45$, and 50 dB SPL, respectively.
(a) (6 points) Find the loudness levels of all four components.

Solution: The loudness levels of these four tones are $60,68,45$, and 50 phons, respectively.
(b) (6 points) Find the loudness of each of these four components.

Solution: The loudnesses are 4350, 7020, 1500, and 2200 sones, respectively.
(c) (6 points) Find the masking coefficients b_{k} for each of these four components in this combination.

Solution: The masking coefficients are $1,0.8\left(\frac{400}{1000}\right), 1$, and $0.9\left(\frac{400}{1000}\right)$.
(d) (6 points) What is the total loudness of this signal?

Solution: The total loudness of this signal is $4350+0.8\left(\frac{400}{1000}\right) 7020+1500+0.9\left(\frac{400}{1000}\right) 2200$.
(e) (6 points) Suppose that we deleted the 300 Hz and 1200 Hz tones, and played only the combination of the two components at 150 Hz and 1050 Hz . Suppose that you adjusted the level of a 1000 Hz reference tone until its loudness was equal to the two-component composite tone. What would be the level of the 1000 Hz tone, in dB SPL, that would exactly match this composite tone's loudness?

Solution: The total loudness of the 150 Hz and 1050 Hz tones is $4350+1500=5850$. The level of an equivalently loud 1000 Hz tone is 65 dB SPL.
2. (20 points) Consider a signal $s[n]$, sampled at $F_{s}=10,000$ samples/second, representing a fricative with the following power spectrum:

$$
E\left[|S(\omega)|^{2}\right]= \begin{cases}0 & |\omega| \leq \frac{2 \pi 2000}{F_{s}} \\ \left|\frac{\omega F_{s}}{2 \pi}\right|-2000 & 2000 \leq\left|\frac{\omega F_{s}}{2 \pi}\right| \leq 2500 \\ 500 & \frac{2 \pi 2500}{F_{s}}<|\omega|\end{cases}
$$

Suppose you want to model this fricative using a Dudley vocoder, with zero-mean, unit-variance whitenoise excitation. The spectral shape is specified using amplitudes A_{ℓ}, where the $\ell^{\text {th }}$ frequency band spans the frequencies $300(\ell-1) \leq\left|\frac{\omega F_{s}}{2 \pi}\right|<300 \ell \mathrm{~Hz}$.
Find $\left\{A_{1}, \ldots, A_{10}\right\}$.

Solution: $A_{1}=A_{2}=\cdots=A_{6}=0$.

$$
\begin{aligned}
A_{7} & =\sqrt{\frac{1}{2 \pi 300 / 10000} \int_{2 \pi 1800 / 10000}^{2 \pi 2100 / 10000}|X(\omega)|^{2} d \omega} \\
& =\sqrt{\left(\frac{1}{2}\right) 100} \\
A_{8} & =\sqrt{\frac{1}{2 \pi 300 / 10000} \int_{2 \pi 2100 / 10000}^{2 \pi 2400 / 10000}|X(\omega)|^{2} d \omega} \\
& =\sqrt{\left(\frac{1}{2}\right)(100+400)} \\
A_{9} & =\sqrt{\frac{1}{2 \pi 300 / 10000} \int_{2 \pi 2400 / 10000}^{2 \pi 2700 / 10000}|X(\omega)|^{2} d \omega} \\
& =\sqrt{\left(\frac{1}{3}\left(\frac{400+500}{2}\right)+\frac{2}{3} 500\right)} \\
A_{10} & =\sqrt{\frac{1}{2 \pi 300 / 10000} \int_{2 \pi 2700 / 10000}^{2 \pi 3000 / 10000}|X(\omega)|^{2} d \omega} \\
& =\sqrt{500}
\end{aligned}
$$

3. (20 points) Suppose that a correlogram is computed using critical bandwidths $B(f)$ given by the following equation, where $B(f)$ and f are both in Hertz:

$$
B(f)= \begin{cases}100 & 0 \leq f \leq 1000 \\ 200 & 1000<f \leq 2000 \\ 300 & 2000<f \leq 3000 \\ 400 & 3000<f \leq 4000\end{cases}
$$

Imagine a signal $x[n]=s_{1}[n]+s_{2}[n]$, sampled at $F_{s}=10,000 \mathrm{~Hz}$, where $s_{1}[n]$ is a pure tone at 1999 Hz with a peak amplitude of 10^{3}, and $s_{2}[n]$ is a pure tone at 2200 Hz with a peak amplitude of 10^{2}. Write the correlogram $\phi(f, \tau)$ of this signal as a function of the autocorrelation lag, τ (in samples), at the frequencies $f=1900 \mathrm{~Hz}, f=2100 \mathrm{~Hz}$, and $f=2300 \mathrm{~Hz}$.
(a) $(6$ points $) \phi(1900, \tau)=$

Solution: At $f=1900 \mathrm{~Hz}$,

$$
\phi(1900, \tau)=\frac{10^{6}}{2} \cos \left(\frac{2 \pi 1999}{10000} \tau\right)
$$

(b) (7 points) $\phi(2100, \tau)=$

Solution: At $f=2100 \mathrm{~Hz}$,

$$
\phi(2100, \tau)=\frac{10^{6}}{2} \cos \left(\frac{2 \pi 1999}{10000} \tau\right)+\frac{10^{4}}{2} \cos \left(\frac{2 \pi 2200}{10000} \tau\right)
$$

(c) (7 points) $\phi(2300, \tau)=$

Solution: At $f=2300 \mathrm{~Hz}$,

$$
\phi(2300, \tau)=\frac{10^{4}}{2} \cos \left(\frac{2 \pi 2200}{10000} \tau\right)
$$

4. (30 points) A particular speaker produces the $/ \mathrm{y} / \mathrm{consonant}$ with formant frequencies of 300,1000 , 1800 , and 2500 Hz . Suppose that, during $/ \mathrm{m} /$, the mouth cavity of this speaker is a uniform tube of length 10 cm . Let $B_{i}(s)$ be the internal susceptance (the susceptance of nose and pharynx, as viewed from the velum), and let $B_{m}(s)$ be the susceptance of the mouth as viewed from the velum.
(a) (6 points) On the same axes, draw a solid curve representing the imaginary part of $B_{i}(j 2 \pi f)$ as a function of f, and a dashed curve representing the imaginary part of $B_{m}(j 2 \pi f)$ as a function of f, where f is in Hertz, over the range $0 \leq f \leq 3000$.

Solution: This should look like the lower plot in Fig. 2 of the Fujimura article. $B_{i}(j 2 \pi f)$ is like a negative cotangent, $-B_{m}(j 2 \pi f)$ is a negative tangent.
(b) (6 points) What is/are the frequency/ies (in Hertz) of the zero crossing(s) of $B_{i}(j 2 \pi f)$, in the range $0 \leq f \leq 3000$? Include $f=0$ if $B_{i}(0)=0$.

Solution: The zero crossings of $B_{i}(j 2 \pi f)$ are at $f \in\{300,1000,1800,2500\} \mathrm{Hz}$.
(c) (6 points) What is/are the frequency/ies (in Hertz) of the zero crossing(s) of $-B_{m}(j 2 \pi f)$, in the range $0 \leq f \leq 3000$? Include $f=0$ if $B_{m}(0)=0$.

Solution: The zero-crossings of a 10 cm tube closed at the opposite end are at $f_{k}=\frac{(k-1) c}{2 \times 0.1}$. Using $c=354 \mathrm{~m} / \mathrm{s}$ gives us $f \in\left\{0, \frac{354}{2 \times 0.1}\right\}$.
(d) (6 points) What is the frequency of the antiformant of $/ \mathrm{m} /$ for this speaker?

Solution: The antiformant is at the vertical asymptote of $B_{m}(j 2 \pi f)$, which is

$$
\frac{c}{4 L}=\frac{354}{4 \times 0.1}
$$

(e) (6 points) Specify upper and lower bounds for the frequencies of the first four formants of $/ \mathrm{m} /$ for this speaker.

Solution: This requires us to simplify the previous two section's answers, giving us a vertical asymptote at 895 Hz and a zero-crossing at 1790 Hz , thus

$$
\begin{aligned}
& 0<F_{1}<300 \\
& 300<F_{2}<885 \\
& 1000<F_{3}<1770 \\
& 1800<F_{4}<2500
\end{aligned}
$$

