ECE 534 Recitation

1.23 Correlation of histogram values Suppose that n fair dice are independently rolled. Let

$$X_i = \begin{cases} 1 & \text{if a 1 shows on the } i^{th} \text{ roll} \\ 0 & \text{else} \end{cases} \quad Y_i = \begin{cases} 1 & \text{if a 2 shows on the } i^{th} \text{ roll} \\ 0 & \text{else} \end{cases}.$$

Let X denote the sum of the X_i 's, which is simply the number of 1's rolled. Let Y denote the sum of the Y_i 's, which is simply the number of 2's rolled. Note that if a histogram is made recording the number of occurrences of each of the six numbers, then X and Y are the heights of the first two entries in the histogram.

- (a) Find $E[X_1]$ and $Var(X_1)$.
- (b) Find E[X] and Var(X).
- (c) Find $Cov(X_i, Y_i)$ if $1 \le i, j \le n$ (Hint: Does it make a difference if i = j?)
- (d) Find Cov(X,Y) and the correlation coefficient $\rho(X,Y)$.
- (e) Find E[Y|X=x] for any integer x with $0 \le x \le n$. Note that your answer should depend on x and n, but otherwise your answer is deterministic.

1.23 Correlation of histogram values (a) X_1 is $\operatorname{Bernoulli}(\frac{1}{6})$, so $E[X_1] = \frac{1}{6}$ and $\operatorname{Var}(X_1) = \frac{1}{6}(1 - \frac{1}{6}) = \frac{5}{36}$.

(b) $E[X] = nE[X_1] = \frac{n}{6}$ and $Var(X) = nVar(X_1) = \frac{5n}{36}$.

(c) We begin by computing $Cov(X_1, Y_1)$. Since $X_1Y_1 = 0$ with probability one, $E[X_1Y_1] = 0$. Therefore $Cov(X_1, Y_1) = E[X_1Y_1] - E[X_1]E[Y_1] = 0 - \frac{1}{6}\frac{1}{6} = \frac{-1}{36}$. So $Cov(X_i, Y_i) = \frac{-1}{36}$ for any i. On the other hand, if $i \neq j$ then X_i is independent of X_i . So

$$\operatorname{Cov}(X_i, Y_j) = \begin{cases} \frac{-1}{36} & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

(d)

$$Cov(X,Y) = \sum_{i} \sum_{j} Cov(X_i, Y_j) = \sum_{i} Cov(X_i, Y_i) = nCov(X_1, Y_1) = \frac{-n}{36}.$$

and

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}} = \frac{-1}{5}.$$

(e) Given that x of the dice show a 1, each of the remaining dice is equally likely to show 2,3,4,5, or 6. Thus, each of the remaining n-x dice shows a 2 with conditional probability $\frac{1}{5}$. Therefore $E[Y|X=x]=\frac{n-x}{5}$.

Formal solution to (e) by definition: By definition,

$$\mathbb{E}[Y|X=x] = \mathbb{E}\left[\sum_{i=1}^{n} Y_i \middle| X=x\right] = \sum_{i=1}^{n} \mathbb{E}[Y_i|X=x].$$

If $x \leq n-1$, consider term $\mathbb{E}[Y_1|X=x] = 0 \cdot \mathbb{P}(Y_1=0|X=x) + 1 \cdot \mathbb{P}(Y_1=1|X=x)$. For the second part, we have

$$\mathbb{P}(Y_1 = 1 | X = x) = \frac{\mathbb{P}(Y_1 = 1, X = x)}{\mathbb{P}(X = x)} = \frac{\frac{1}{6} \binom{n-1}{x} \left(\frac{1}{6}\right)^x \left(\frac{5}{6}\right)^{n-1-x}}{\binom{n}{x} \left(\frac{1}{6}\right)^x \left(\frac{5}{6}\right)^{n-x}} = \frac{n-x}{5n}.$$

Due to symmetry, $\mathbb{E}[Y|X=x]=n\mathbb{E}[Y_1|X=x]=\frac{n-x}{5}$. If x=n, then obviously $\mathbb{E}[Y|X=x]=0$. **1.25 A function of jointly distributed random variables** Suppose (U, V) is uniformly distributed over the square with corners (0,0), (1,0), (1,1), and (0,1), and let X = UV. Find the CDF and pdf of X.

 General solution: Find CDF first, then take derivative to get pdf. For CDF of X, we have

$$F_X(c) = \mathbb{P}(X \le c) = \mathbb{P}(UV \le c) = \int_{u=0}^1 \mathbb{P}\left(V \le \frac{c}{u}\right) f_U(u) du. \tag{7}$$

When $0 \le c \le 1$, if $0 \le u \le c$, $\frac{c}{u} \ge 1$ and thus $\mathbb{P}\left(V \le \frac{c}{u}\right) = 1$, since V is a uniform distribution over [0,1]; if $u \ge c$, $\mathbb{P}\left(V \le \frac{c}{u}\right) = \frac{c}{u}$. Therefore, $F_X(c)$ becomes

$$\int_{u=0}^{c} 1du + \int_{u=c}^{1} \frac{c}{u} du = c - c \ln c, \ 0 \le c \le 1.$$

Obviously $F_X(c) = 0$ if c < 0 and $F_X(c) = 1$ if c > 1.

Geometric Interpretation:

1.25 A function of jointly distributed random variables The square has unit area so that the joint density is unit valued within the square. The range of X is the interval [0,1], so fix c in [0,1] and consider the event $\{UV \leq c\}$. The probability of this event is the area of the square minus the upper right region above the curve v = c/u. This area is one minus the area of the region inside the square above the curve v = c/u. Therefore,

$$F_X(c) = \begin{cases} 0 & c \le 0\\ 1 - \int_c^1 (1 - \frac{c}{u}) du = c - c \ln c & 0 \le c \le 1\\ 1 & c \ge 1 \end{cases}$$

Differentiating yields

$$f_X(c) = \begin{cases} -\ln c & 0 < c \le 1\\ 0 & \text{else} \end{cases}$$

- **1.29 Uniform density over a union of two square regions** Let the random variables X and Y be jointly uniformly distributed on the region $\{0 \le u \le 1, 0 \le v \le 1\} \cup \{-1 \le u < 0, -1 \le v < 0\}$. (a) Determine the value of f_{XY} on the region shown.
- (b) Find f_X , the marginal pdf of X.
- (c) Find the conditional pdf of Y given that X = a, for $0 < a \le 1$.
- (d) Find the conditional pdf of Y given that X = a, for $-1 \le a < 0$.
- (e) Find E[Y|X=a] for $|a| \leq 1$.
- (f) What is the correlation coefficient of X and Y?
- (g) Are X and Y independent?
- (h) What is the pdf of Z = X + Y?

1.29 Uniform density over a union of two square regions (a) Region has area 2 so the density function is 1/2 in the region and zero outside.

(b)
$$f_X(x) = \begin{cases} 0.5 & \text{if } |x| \le 1 \\ 0 & \text{else} \end{cases}$$

(c) If
$$0 < a \le 1$$
, $f_{Y|X}(y|a) = \begin{cases} 1 & \text{if } 0 \le y \le 1 \\ 0 & \text{else} \end{cases}$

(d) If
$$-1 \le a < 0$$
, $f_{Y|X}(y|a) = \begin{cases} 1 & \text{if } -1 \le y \le 0 \\ 0 & \text{else} \end{cases}$

(e)
$$E[Y|X=a] = \begin{cases} -0.5 & \text{if } -1 \le a < 0 \\ 0.5 & \text{if } 0 < a < 1 \end{cases}$$

(f)
$$E[X] = E[Y] = 0$$
, $Var(X) = E[X^2] = 1/3$, $Var(Y) = 1/3$, $E[XY] = \frac{1}{2} \int_0^1 \int_0^1 xy dx dy + \frac{1}{2} \int_{-1}^0 \int_{-1}^0 xy dx dy = \int_0^1 \int_0^1 xy dx dy = 1/4$. So $\rho_{XY} = \frac{1/4}{\sqrt{1/3 \times 1/3}} = \frac{3}{4}$.

(g) No, because $f_{XY}(x,y)$ doesn't factor into the product of a function of x and a function of y.

(h) The range of Z is
$$[-2,2]$$
. $f_Z(z)=\left\{\begin{array}{ccc} |z|/2 & \text{if } -0\leq |z|\leq 1\\ 1-|z|/2 & \text{if } 1\leq |z|\leq 2\\ 0 & \text{else} \end{array}\right.$ (Shape is two triangles.)

Suppose there are two i.i.d. random variables $X, Y \sim \text{Unif}[0, 1]$. Let Z = X + Y, what is the CDF and pdf of Z.

Solution: There are three types of methods to solve this problem.

• General solution: Find CDF first, then take derivative to get pdf. For CDF of Z, we have

$$\mathbb{P}(Z \le z) = \mathbb{P}(X + Y \le z) = \int_{y=0}^{1} \mathbb{P}(X \le z - y) f_Y(y) dy. \tag{1}$$

When $0 \le z \le 1$, for region $0 \le y \le z$, $\mathbb{P}(X \le z - y) = z - y$; for region $z < y \le 1$, $\mathbb{P}(X \le z - y) = 0$. So (1) becomes

$$\int_{y=0}^{z} (z-y)dy = \frac{z^2}{2}, \ 0 \le z \le 1.$$
 (2)

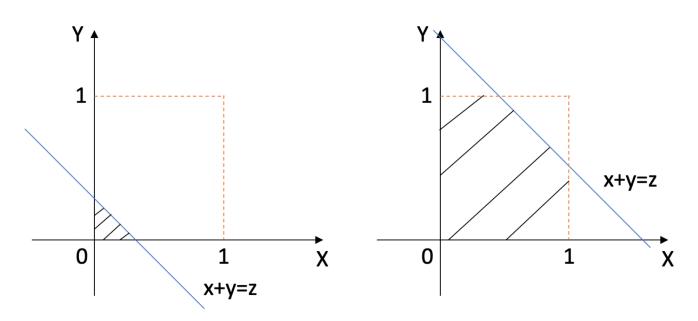
When $1 < z \le 2$, for region $0 \le y \le z - 1$, $\mathbb{P}(X \le z - y) = 1$; for region $z - 1 < y \le 1$, $\mathbb{P}(X \le z - y) = z - y$. So (1) becomes

$$\int_{y=0}^{z-1} 1 dy + \int_{y=z-1}^{1} (z-y) dy = \frac{-z^2 + 4z - 2}{2}, \ 1 < z \le 2.$$
 (3)

For z < 0, $F_Z(z) = 0$ and z > 2, $F_Z(z) = 1$, which is obvious. To get pdf of Z we just need to take the derivative:

$$f_Z(z) = \begin{cases} 0 & z < 0 \\ z & 0 \le z \le 1 \\ 2 - z & 1 < z \le 2 \\ 0 & z > 2 \end{cases}$$

• Geometric interpretation: Consider X, Y as two axis on the 2D plane. x + y = z is a line on the plane and $z + y \le z$ corresponds to the region below this line. So the CDF becomes the area in shadow as shown in the following figure.



We can thus get the same CDF as

$$F_Z(z) = \begin{cases} 0 & z < 0\\ \frac{z^2}{2} & 0 \le z \le 1\\ 1 - \frac{(2-z)^2}{2} & 1 < z \le 2\\ 1 & z > 2 \end{cases}$$

Taking derivative of $F_Z(z)$, we can obtain $f_Z(z)$.

Convolution of probability distributions (https://en.wikipedia.org/wiki/Convolution_of_probability_distributions): If X, Y are independent distributions, then Z = X + Y has pdf

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx. \tag{4}$$

To make sure $f_X(x)$ and $f_Y(z-x)$ are both 1, it requires $0 \le x \le 1$ and $0 \le z - x \le 1$. Thus when $0 \le z \le 1$, (4) becomes

$$f_Z(z) = \int_0^z 1dx = z. \tag{5}$$

When $1 < z \le 2$, (4) becomes

$$f_Z(z) = \int_{z-1}^1 1 dx = 2 - z.$$
 (6)

And $f_Z(z) = 0$ elsewhere. The result is the same as in the first solution.