Tue 8/25

What is the power system problem?

Why is the problem hard?

Example: Edison 1882 NYC Pearl St Station 50 customers.

Disconnected for large currents

A fault in the street lights can take out the generator and hence the entire system.

THINGS WE DON'T LIKE:

No protection for individual loads.
No generator protection
DC generator too complicated.

No protection for individual loads / Reliability Anything breaks, we lose power
No generator protection / Efficiency DC systems are low-voltage hence not so efficient.

Losses on the lines
We are worried about reliability...

Idea: Interconnection!

Every new line we add dramatically improves reliability.

In an electric grid:

\[\text{Reliability} = \text{\$\$\$\$} \]

Gen 1 \((\text{+}) \) \(\rightarrow \) \(110V \) \(\rightarrow \) \(100V \) \(\rightarrow \)

Gen 2 \((\text{+}) \) \(\rightarrow \) \(1A \) \(\rightarrow \) \(15Ω \) \(\rightarrow \) \(111V \)? \(\leftrightarrow \) \(109V ? \)

Interconnection improves reliability but introduces the issue of coordination.

What is the voltage needed to drive 1A from Gen 2 to Gen 1?

If we're not careful the generators can easily destroy each other. (Not an issue w/o interconnection)

DC system: Coordination is tractable.

Ohm's law, resistor grid, **LINEAR.**
AC system is much more efficient. (For reasons we will soon see)

AC waveforms have an issue of phase

Not so obvious

AC system: Coordination is intractable (formally)

Problem is \textbf{NON LINEAR}.

\textbf{Summary:}

What is the power system problem?

Efficiency + Reliability.

Why is the problem hard?

Interconnection + AC physics.

The need for coordination + nonlinearity.