ECE 486: Control Systems

Lecture 9B: PID Tuning for Second-Order Systems




Key Takeaways

This lecture describes a method to tune PID controllers using
pole placement.

For second-order systems, the approach is to:
e Use PID control and

e Select the gains to place the three closed-loop poles at
desired locations.

* A Pl controller (without the D-term) should be used if the
plant has sufficient damping.

The choice of natural frequency (time constant) is critical.



Desigh Approach: Pole Placement

1. Approximate the plant dynamics by a first or second-order
ODE using the dominant pole approximation.

2. If the dynamics are first-order: Use a Pl controller to place
the two poles at a desired location.

2. If dynamics are second-order:

Use a PID controller to place the three poles.

Avoid use of derivative control if plant is well-damped. This
will restrict the choice of the three poles.

A reasonable starting point is to place all poles at s = —w,,.

The choice of natural frequency (time constant) is critical.




Desigh Approach: Pole Placement

1. Approximate the plant dynamics by a first or second-order
ODE using the dominant pole approximation.

2. If the dynamics are first-order: Use a Pl controller to place
the two poles at a desired location.

2. If dynamics are second-order:
Use a PID controller to place the three poles.

Avoid use of derivative control if plant is well-damped. This
will restrict the choice of the three poles.

3. Further tuning is often required. Use root locus to tune one
gain at a time.
4. Implementation:

D-control: Use smoothed derivative or rate feedback
I-control: Use anti-windup (to be discussed later)



PID Tuning For Second-Order Systems

Example plant model: _

) . where a; = —2,

y(t) + a1y(t) + aoy(t) = bou(t) +bod(t) 4, =17 and by = 17
Formal design requirements can be stated. Roughly a faster
closed-loop response will:

* |ead to better reference tracking and disturbance rejection,

* but it will also increase the actuator effort and degrade the
noise rejection.

Important: Second-order ODE is typically an approximate model.
Formal tools to assess the impact of model uncertainty later.

If the closed-loop is too fast then the unmodeled dynamics will
degrade performance and may even cause instability.



Closed-Loop Model

Dynamics of the plant: where a; = 2.
§(t) + ary(t) + aoy(t) = bou(t) + bod(t) 4, =17 and by = 17
PID controller in rate feedback form:
u(t) = Kpe(t) + K; fo T)dr — Ka9(t)
Sub for u into plant dynamics and coIIect terms.
Closed-loop dynamics are:
yB3(t) + (a1 + boKa)ii(t) + (a0 + boK,)y(t) + (boK;)y(t)
= bo K, 7(t) + bo K; r(t) + bod(t)
The closed-loop characteristic equation is:

0= s+ (a1 4 boKq)s* + (ag + boKy)s + (bo K;)



PID Tuning

Closed-loop characteristic equation:
0=s°+ (a1 + boKy)s® + (ag + boKp)s + (boK;)
Pole Placement:
* Select the desired poles to satisfy for some ({, w,,, p):
0 = (5* + 2Cwns +w;) - (5 +p)
Choose { = 1 and p = w,, as a starting point.

 The desired characteristic equation is:

0= 5%+ (p+2Cwn)s® + (2Cwnp + wy)s + wyp
* Match coefficients to the closed-loop characteristic equation:

a1 +boKg = p+2Cwy,

ap + boKp = 2Cwnp + wy,
bOK@ - Uan

> Solve these equations
for the three gains.



Comparison of Two PID Controllers

K, is designed for faster response than K,.

rad

Design | ¢ | wy, =2 | p | Poles, s15 and s3 | M, | Tsepie, seC | K, | K; K,
Ki(s) || 1 6 6 -6, -6, -6 0 0.5 5.35 | 12.7 | 1.18
Ky(s) || 1 3.5 3.5 -3.5, -3.5, -3.5 0 0.86 1.16 | 2.52 | 0.735




Comparison of Two Pl Controllers

K, is designed for faster response than K,.
Design || ¢ | w rad | || Poles, s12 and s3 | M, | Tsemie, sec | K, | K; K,

ny gec

Ki(s) || 1 ¢ 6 -6, -6, -6 0 0.5 5.35 | 12.7 | 1.18
Ky(s) || 1 3.5 3.5 -3.9, -3.9, -3.5 0 0.86 1.16 | 2.52 | 0.735

Step responses with r(t) = 4, d(t) = 2 for t > 1.5, and sensor noise for ¢t > 4.
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