
ECE486: Control Systems

I Lecture 12A: Root Locus Rules DEF

Goal: Introduce Root Locus Rules DEF.

Reading: FPE, Chapter 5



Reminder: Root Locus

L(s) YK
+

�R

where L(s) =
b(s)

a(s)
=

sm + b1s
m−1 + . . . + bm−1s + bm

sn + a1sn−1 + . . . + an−1s + an
, m ≤ n

Root locus: the set of all s ∈ C that solve the characteristic
equation

a(s) + Kb(s) = 0

as K varies from 0 to ∞.



Equivalent Characterization of RL: Phase Condition

Recall our original definition: The root locus for 1 + KL(s) is
the set of all closed-loop poles, i.e., the roots of

1 + KL(s) = 0,

as K varies from 0 to ∞.

A point s ∈ C is on the RL if and only if

L(s) = − 1

K︸︷︷︸
negative and real

for some K > 0

This gives us an equivalent characterization:

The phase condition: The root locus of 1 + KL(s) is the set
of all s ∈ C, such that ∠L(s) = 180◦, i.e., L(s) is real and
negative.



Reminder: Rules for Sketching Root Loci

There are six rules for sketching root loci. These rules are
mainly qualitative, and their purpose is to give intuition about
impact of poles and zeros on performance.

These rules are:

I Rule A — number of branches (= number of open loop
poles)

I Rule B — start points (= open loop poles)

I Rule C — end points (= open loop zeros)

I Rule D — real locus (located relative to real open-loop
poles/zeros)

I Rule E — asymptotes

I Rule F — jω-crossings

Last time, we have covered Rules A–C



Example
Let’s consider L(s) =

s + 1

s(s + 2)
(
(s + 1)2 + 1

)

I Rule A:

{
m = 1

n = 4
=⇒ 4 branches

I Rule B: branches start at open-loop poles
s = 0, s = −2, s = −1± j

I Rule C: branches end at open-loop zeros s = −1,±∞
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Example, continued

Three more rules:

I Rule D: real locus

I Rule E: asymptotes

I Rule F: jω-crossings

Rules D and E are both based on the fact that

1 + KL(s) = 0 for some K > 0 ⇐⇒ L(s) < 0

Characteristic equation in our example:

s(s + 2)
(
(s + 1)2 + 1

)
︸ ︷︷ ︸

a(s)

+K (s + 1)︸ ︷︷ ︸
b(s)

= 0

s4 + 4s3 + 6s2 + (4 + K)s + K = 0

— don’t even think about factoring this polynomial!!



Rule D: Real Locus

The branches of the RL start at the open-loop poles. Which
way do they go, left or right?

Recall the phase condition:

1 + KL(s) = 0 ⇐⇒ ∠L(s) = 180◦

∠L(s) = ∠
b(s)

a(s)

= ∠
(s− z1)(s− z2) . . . (s− zm)

(s− p1)(s− p2) . . . (s− pn)

=

m∑

i=1

∠(s− zi)−
n∑

j=1

∠(s− pj)

— this sum must be ±180◦ for any s that lies on the RL.



Rule D: Real Locus

So, we try test points:
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∠(s1 − z1) = 0◦ (s1 > z1)

∠(s1 − p1) = 180◦ (s1 < p1)

∠(s1 − p2) = 0◦ (s1 > p2)

∠(s1 − p3) = −∠(s1 − p4)

(conjugate poles cancel)

∠(s1 − z1)− [∠(s1 − p1) + ∠(s1 − p2) + ∠(s1 − p3) + ∠(s1 − p4)]

= 0◦ − [180◦ + 0◦ + 0◦] = −180◦ s1 is on RL



Rule D: Real Locus

Try more test points:
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∠(s2 − z1) = 180◦ (s2 < z2)

∠(s2 − p1) = 180◦ (s2 < p1)

∠(s2 − p2) = 0◦ (s2 > p2)

∠(s2 − p3) = −∠(s1 − p4)

(conjugate poles cancel)

∠(s2 − z1)− [∠(s2 − p1) + ∠(s2 − p2) + ∠(s2 − p3) + ∠(s2 − p4)]

= 180◦ − [180◦ + 0◦ + 0◦] = 0◦ ×s2 is not on RL



Rule D: Real Locus

Rule D: If s is real, then it is on the RL of 1 +KL if and
only if there are an odd number of real open-loop poles
and zeros to the right of s.
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Rule E: Asymptotes
How does the locus look as s→∞?

180◦ = ∠L(s) = ∠
sm + b1s

m−1 + . . .

sn + a1sn−1 + . . .

= ∠
sm−n + b1s

m−n−1 + . . .

1 + a1s−1 + . . .

' ∠sm−n if |s| → ∞ (recall m ≤ n)

Claim: If ∠sm−n = 180◦, then

∠s =
180◦ + ` · 360◦

n−m
, ` = 0, 1, . . . , n−m− 1

Proof:

s = |s|ej∠s sm−n = |s|m−nej(m−n)∠s

∠sm−n = 180◦ =⇒ (m− n)∠s = 180◦ + ` · 360◦



Rule E: Asymptotes

Rule E: Branches near ∞ have phase

∠s ' 180◦ + ` · 360◦
n−m

=
(2`+ 1) · 180◦

n−m
, ` = 0, 1, . . . , n−m− 1

Note: if m = n, then there are no branches at ∞.



Back to Example: Rule E
Branches near ∞ have phase

∠s =
(2` + 1) · 180◦

n−m
, ` = 0, 1, . . . , n−m− 1

In our example, L(s) =
s + 1

s(s + 2)
(
(s + 1)2 + 1

)
{
n = 4

m = 1

∠s =
(2` + 1) · 180◦

3
, ` = 0, 1, 2

` = 0 :
2 · 0 + 1

3
180◦ = 60◦

` = 1 :
2 · 1 + 1

3
180◦ = 180◦

` = 2 :
2 · 2 + 1

3
180◦ =

5

3
180◦ =

(
2− 1

3

)
180◦ = −60◦

— asymptotes have angles 60◦, 180◦, −60◦



Rule F: jω-crossings

Do the branches of the root locus cross the jω axis?
(transition from stability to instability)

Goal: determine if the equation

a(jω) + Kb(jω) = 0

has a solution ω ≥ 0 for some K > 0.

Best approach here: use the Routh test to first determine the
critical value of K (when the characteristic polynomial becomes
unstable), then plug it in and solve for jω-crossings
(numerically or analytically).



Rule F: jω-crossings

In our example, the characteristic polynomial is

s4 + 4s3 + 6s2 + (4 + K)s + K

Form the Routh array:

s4 : 1 6 K
s3 : 4 4 + K 0
s2 : 20−K 4K
s1 : 80−K2 0
s0 : 4K

For stability, need 20−K > 0, 80−K2 > 0, 4K > 0

The characteristic polynomial is stable for K <
√

80 = 4
√

5

=⇒ Kcritical = 4
√

5



Rule F: jω-crossings

In our example, the characteristic polynomial is

s4 + 4s3 + 6s2 + (4 + K)s + K

The critical value: K = 4
√

5 (from Routh test).

To find the jω-crossing, plug in and solve:

(jω)4 + 4(jω)3 + 6(jω)2 + (4 + 4
√

5)jω + 4
√

5 = 0

ω4 − 4jω3 − 6ω2 + (4 + 4
√

5)jω + 4
√

5 = 0

real part: ω4 − 6ω2 + 4
√

5 = 0

imag. part: − 4ω3 + 4(1 +
√

5)ω = 0 ω2 = 1 +
√

5

jω-crossing at jω0 =
√

1 +
√

5 ≈ 1.8, when K = 4
√

5 ≈ 8.9



Complete Root Locus

L(s) =
s + 1

s(s + 2)
(
(s + 1)2 + 1

)

Rule A: 4 branches

Rule B: branches start at p1, . . . , p4

Rule C: branches end at z1,±∞
Rule D: real locus = [z1, p1]∪ (−∞, p2]

Rule E: asymptotes form angles at
60◦, 180◦,−60◦

Rule F: jω-crossings at ±jω0, where

ω0 =

√
1 +
√

5 ≈ 1.8

when K = 4
√

5 ≈ 8.9

(transition from stability to
instability)
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