
ECE 486 Solution Set 11 Fall 2021

Problem 1. Consider the single-input, single-output transfer function:

Y (s) =
s+ 1

s2 + 2s+ 2
U(s)

(a) Find a second-order state-space model that represents this transfer function.
(b) For this state-space model, calculate a state-feedback controller u = −Kx+ r that places

the closed-loop poles at −4 and −25.
(c) Construct a stable observer to estimate x based on the known inputs u and observations

y. You may use MATLAB for this part.
(d) With the controller and observer from the previous problems in place, calculate kr such

that u = −Kx̂ + krr yields a closed-loop system Y/R with unity gain. You may use
MATLAB.

(e) Plot the step response using MATLAB.

Solution.

(a) Recall that for a transfer function:

Q (s)

P (s)
=
b0s

n + b1s
n−1 + · · ·+ bn−1s+ bn

sn + a1sn−1 + · · ·+ an−1s+ an

the controllable canonical realization is:

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 0 . . . 1
−an −an−1 −an−2 . . . −a1

 (1)

B =
[
0 0 . . . 1

]T
(2)

C =
[
bn − anb0 bn−1 − an−1b0 bn−2 − an−2b0 . . . b1 − a1b0

]
(3)

D = [b0] (4)

Here b0 = 0 and therefore we have that

ẋ =

[
0 1
−2 −2

]
x+

[
0
1

]
y =

[
1 1

]
(b) If we want to place the closed loop poles at −4 and −25, then the new denominator would

be (s+ 4)(s+ 25) = s2 + 29s+ 100. Therefore, a0 + k1 = 100 =⇒ k1 = 100− 2 = 98 and
a1 + k2 = 29 =⇒ k2 = 29− 2 = 27. Hence, K =

[
98 27

]
=⇒ u = −

[
98 27

]
x+ r.

(c) For an observer gain L, the observer poles are the eigenvalues of A− LC, which coincide
with the eigenvalues of AT −CTLT . Consequently to compute the observer gain in MAT-
LAB, we apply the place command for (AT , CT ). It is a rule of thumb, to pick observer
poles to be 2-5 times further than the controller poles. Suppose we want to place the
observer poles at {−50,−51}. By using the MATLAB command

L = place(A’, C’, [-50, -51])

where (AT , CT ) are as above we get L =
[
−2449 2548

]T
.
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(d) To obtain kr, recall that x̂ (t) ≡ 0 if x̂ (0) = 0, so we can ignore the observer. The closed
loop system transfer function disregards initial conditions. With full state feedback, the
closed loop transfer function is

Y (s)

R (s)
= C [sI − (A−BK))]−1Bkr

To set the DC gain to unity we need

1 = C [sI − (A−BK))]−1Bkr

=⇒ kr = 100

(e) The plot is shown below. The overshoot is expected due to the LHP zero.
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Problem 2. Consider the single-input, single-output transfer function:

Gp(s) =
1− s/2
1 + s/2

1

s2

(a) Find a third-order state-space model that represents this transfer function.
(b) For this state-space model, calculate a state-feedback controller u = −Kx+ r that places

the closed-loop poles at −4, −13, and −25. You may use MATLAB to calculate this
controller, but not to find the the state-space model.

(c) Construct a stable observer, and put this together to form a compensator of the form
U = −GcY +GrR. You may use MATLAB.

(d) Calculate the Nyquist plot of GcGp. You may use MATLAB to do so. Is the system
stable? If so, calculate the gain and phase margins.

Solution. (a) A =

0 1 0
0 0 1
0 0 −2

, B =

0
0
1

, C =
[
2 −1 0

]
(b) K =

[
1300 477 40

]
(c) We place the observer poles at -50, -51, -52. L =

 9301
18450
29400

.

Gc =
2.207e07s2 + 7.979e07s+ 8.619e07

s3 + 193s2 + 1.432e04s+ 2.257e07

Gr =
s3 + 153s2 + 7802s+ 1.326e05

s3 + 193s2 + 1.432e04s+ 2.257e07
.
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Figure 1: Nyquist plot in Q2

(d) See Figure 1 for the Nyquist plot of GcGp. The gain margin is 0.115 dB and the phase
margin is -1.11 deg.
We now check stability with the nyquist plot. I have redrawn the nyquist plot in Figure
2 for counting the number of windings around -1. Clearly there are 3 anticlockwise loops
around -1, coloured in red, green and blue. So N must be -3. Gc has 2 RHP poles, and
Gp has 2 poles at zero. If the poles at zero are included as RHP poles, P = 4, else P = 2.
In either case, Z = N + P = 1/ − 1 and not zero. However, the closed loop has to be
stable because we placed the poles in the LHP ourselves. ¡

Figure 2: Rough Nyquist plot for counting N

The problem here is that Gc has a double pole at the origin. This is why the nyquist plot
is not a closed loop, and shoots to infinity as ω approaches zero. So we need to consider a
small semi-circular modified contour of radius r around the origin as shown in Figure 3a.
Radius r is taken to be very small. The green crosses in Figure 3a represent the poles of
Gc, two of which are in RHP and one is in LHP. The blue crosses represent poles of Gp,
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one in LHP and two at the origin. However, with respect to the modified contour, the
two poles at the origin lie in the LHP. So they are not counted as open loop RHP poles
and P = 2.
Now we need to understand how the image of the Nyquist plot changes under this modified
contour. See Figure 3b to see what happens. We forget the 3 anticlockwise loops already
accounted for before and focus only on the black part that shoots off to infinity in Figure
2. For r very small, GpGc(jr) ≈ k. 1

(jr)2
= −k

r2
where k is the finite limit lims→0 s

2GcGp(s).

The point is that GcGp(jr) will be close to the real line even though its magnitude
is very large ≈ k

r2
. Since the plot goes toward negative infinity, we can also say that

k is negative. The semicircular contour can be parametrized as rejθ as θ goes from
−π/2 → −π/4 → 0 → π/4 → π/2. Since r is really small, GcGp(re

jθ) ≈ −k
r2
e−2jθ. Since

−k is positive, the phase of GcGp(re
jθ) will be ≈ e−2jθ. As θ travels from −π/2 to π/2

in the anticlock direction, −2θ travel from −π back to π = −π in the clockwise direction.
So the nyquist plot travels through a large clockwise circle of radius −k

r2
as indicated in

Figure 3b when we modify the contour. This circle will wind around -1 due to its very
large radius, which makes N = −3 + 1 = −2. Since P = 2, Z = N + P = 0 which means
the system is stable.

(a) Modified contour to avoid poles at origin (b) Image of the modified contour

Figure 3: Modified countour and its image.

Problem 3. Consider the following nonlinear system

ẋ = −4x− 2u+ u3

(a) Find an equilibrium (x̄, ū) with ū = 2.
(b) Linearize the dynamics around (x̄, ū).

Solution. (a) For equilibrium, we should have

−4x̄− 2ū+ ū3 = 0.

Substituting ū = 2 gives x̄ = 1. Hence the equilibrium point with ū = 2 is (x̄, ū) = (1, 2).
(b) First, let us define deviations from the equilibrium point:

δx := x− x̄, δu := u− ū.
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For the above system, we have f(x, u) = −4x− 2u+ u3. From (a) we know that (x̄, ū) =
(1, 2). Hence we have :

∂f

∂x
(x̄, ū) = −4, (5)

∂f

∂u
(x̄, ū) = −2 + 3× 22 = 10. (6)

Therefore, we can obtain the following linear system via linearization:

δ̇x = −4δx + 10δu.

5


