
ECE 486 Solution Set 9 Fall 2021

Problem 1 (20 points). Suppose we have designed a controller K for a plant G. After simu-
lations, we think the response speed for a unit step reference signal is too slow. In this case,
shall we decrease or increase the crossover frequency of the open loop transfer function? What
issues will there be if we have a very large crossover frequency?

Solution.
To make the response speed faster, we should increase the crossover frequency of the open loop
transfer function to have a larger bandwidth. If we have a very large crossover frequency, we
may end up with a poor noise rejection and small phase margin, which may cause the instability
of the system.

Problem 2 (80 points). DC motors are used in many electro-mechanical systems. A model for
a DC motor is:

Jẏ + by = cV (1)

where y is the angular velocity of the motor shaft (deg/sec), and V is the input voltage (Volts).
The model parameters are: J=Rotational Inertia (N m sec2/deg2), b=rotational damping (Nm
sec/deg), and c=gain from input voltage to applied torque (Nm/Volts). For this problem we’ll
use the values J = 3, b = 5 and c = 12.
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Figure 1: DC Motor Feedback System

Consider the feedback loop in the figure above where G(s) is the transfer function for the DC
motor and K(s) is the controller transfer function. The specifications are to design a controller
so that the closed loop:

i. is stable,
ii. has a loop crossover frequency near 20 rad/sec
iii. has gain less than 0.01 from reference r to error e for frequencies below 0.1 rad/sec.
iv. has gain less than 0.04 from input n to output y for frequencies above 200 rad/sec.

Perform the following steps:

(a) Translate specifications iii. and iv. into requirements on the loop gain |L(jω)|.

Answer: The transfer function from r to e is S(s) =
1

1 + L(s)
. The steady error due to a

unit step reference input r(t) = r̄ is given by ē = S(0)r̄. Thus specification iii) is equivalent

to |S(jω)| ≤ 0.01 for ω ≤ 0.1
rad

sec
. This is approximately equivalent to |L(jω)| ≥ 100 for

ω ≤ 0.1
rad

sec
.

The transfer function from n to y is −T (s) =
−L(s)

1 + L(s)
. Specification iv. corresponds to

|T (jω)| ≤ 0.04 for ω ≥ 200
rad

sec
. and this is approximately equivalent to |L(jω)| ≤ 0.04

for ω ≥ 200
rad

sec
.
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(b) Design a proportional control law K(s) = Kp to satisfy requirements i. and iii. only. Plot
G(s) and L(s) = G(s)K(s) on the same Bode plot using the Matlab command bode.
Also, simulate the closed-loop system with r(t) = 1 deg/sec and n(t) = 0.1 sin(200t). Plot
the motor speed response y(t) and the reference command r(t) on the same plot. Hand
in both your Bode plot and your step response plot. For your choice of Kp, what is the
loop cross-over frequency and what is the value of |L(j200)|?
Note: An m-file and Simulink diagram have been posted with this homework. You
only need to enter your proportional gain and the m-file will generate both the Bode plot
and the step response plot.

Answer: In the previous part we showed that |L(jω)| = |G(jω)K(jω)| ≥ 100 for ω ≤

0.1
rad

sec
will ensure specification iii. is satisfied. The system transfer function is G(s) =

12

3s + 5
. This has a corner frequency at ω = 1.6

rad

sec
and DC gain G(0) =

12

5
= 2.4.

Thus Kp =
100

2.4
will ensure that iii. is approximately satisfied. You can verify that the

closed-loop is stable for this gain and hence i. is also satisfied. The Bode plot and step
responses are shown below. They were generated using the m-file distributed with this
homework. From the Bode plot the cross-over frequency is approximately 165rad/sec. It
also clear from the Bode plot that the loop gain at 200rad/sec is far above the requirement
|L(j200)| ≤ 0.04 that we derived from specification iv. Thus this design fails the noise
filtering specification and hence the time response shows a large amplitude sinusoid due
to the noise.
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(b) Part B Step Response

(c) Next, design a proportional control law K(s) = Kp to satisfy requirements i. and iv. only.
Generate and hand-in the Bode plot and step response plots as described in the part (b).
For your choice of Kp, what is the loop cross-over frequency and what is the value of
|L(j0)|?

Answer: In part (a) we showed that |L(jω)| = |G(jω)K(jω)| ≤ 0.04 for ω ≥ 200 rad/sec

will ensure specification iv. is satisfied. Thus Kp ≤
0.0385

|G(j200)|
will ensure that iv. is

satisfied. You can verify that the closed-loop is stable for this gain and hence i. is also
satisfied. The Bode plot and step responses are shown below. From the Bode plot the
cross-over frequency is approximately 7.5 rad/sec. It also clear from the Bode plot that
the loop gain at 0 rad/sec is below the requirement |L(0)| ≥ 100 that we derived from
specification iii. Thus this design fails the specification iii. and hence the time response
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shows a large steady state error.
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(b) Part C Step Response

(d) At this point is should be clear that proportional control will not be able to satisfy the
design objectives. Use the loop-shaping procedure described in class to design a controller
that satisfies objectives ii., iii., and iv. Verify that the closed-loop is stable with your final
control design. Generate and hand-in the Bode plot and step response plots as described
in the part (b). Your controller will be specified as a transfer function and you’ll need to
modify the m-file and Simulink diagram.
Recommendation: Use a proportional gain to set the loop cross-over frequency (re-
quirement ii.). Then use an integral boost and roll-off to satisfy requirements iii. and iv.,
respectively. This may require some iteration to get values that meet all design specifica-
tions.

Answer: We can follow the procedure described in the recommendation above. First
choose the proportional gain so that the loop gain has crossover |L(jωc)| = 1 at ωc = 20

rad/sec. This can be done with the gain K1 =
1

|G(jωc)|
≈ 5.02. This will give the first

loopshape L1(s) = G(s)K1.
The first loop shape has DC gain |L1(0)| = 12.0. Thus we need to increase the gain by a

factor of
100

12.0
= 8.4 to ensure that we satisfy requirement iii. We’ll use an integral boost:

K2(s) =
s + ω̄2

s
(2)

where ω̄2 is the frequency below which the gain starts to increase. With some iteration
the choice ω̄2 = 5 rad/sec seem to easily exceed the low frequency requirement. Notice
that ω̄2 < ωc. As discussed in class, for stability and robustness reasons we need the slope
of |L| to be “shallow” near ωc. Thus we need to choose our low-frequency boost to start
sufficiently below ωc that it doesn’t have a significant impact on the slope at ωc. After
this stage our controller is K1K2(s) and our loop-shape is L2(s) = G(s)K1K2(s).
Finally, we need to modify the loop shape to satisfy the design requirement iv. We can
choose a roll-off to decrease the high frequency gain.

K3(s) =
ω̄3

s + ω̄3
(3)

Again, we want to choose ω̄3 > ωc so that the roll-off has negligible effect on the slope of
|L| near cross-over. However, we also want to choose ω̄3 small enough that we decrease
the high frequency gain enough to satisfy |L(j200)| ≤ 0.0385. After some trial and
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error ω̄3 = 80 rad/sec ensures that the requirements are satisfied. Our final controller is
K(s) = K1K2(s)K3(s) and our final loop-shape is L2(s) = G(s)K(s).
The Bode plot and step responses are shown below. The step response has a small steady-
state error and good noise rejection. The response also has a small overshoot.
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(b) Part D Step Response

(e) What is the ordinary differential equation that models the input-output dynamics of the
control law designed in part (d)?

Answer: The transfer function for the final controller designed in part (d) is:

K(s) = 5.02
s + 5

s

80

s + 80
(4)

Multiplying this out using Matlab:

K(s) =
401.4s + 2007

s2 + 80s
(5)

This is a second order transfer function. This transfer function corresponds to the following
ODE that relates the controller input e to output u:

ü + 80u̇ = 401.4ė + 2007e (6)
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