
ECE 486 Solution Set 3 Fall 2021

Problem 1. Consider the following first order system:

ẏ = −0.5y + 2u, y(0) = 0 (1)

(a) (5 points) First, consider a proportional control law u(t) = Kp(r(t) − y(t)) where r(t)
is the reference command. As mentioned in class, it is typically important, for practical
reasons, that u(t) does not get too large. Consider a unit step command:

r(t) =

{
0 t < 0 sec
1 t ≥ 0 sec

(2)

For what gains Kp is |u(t)| ≤ 1 for all time? (Hint: The largest value of |u(t)| will occur
at t = 0.)

(b) (5 points) Choose the gain Kp that satisfies the constraint in part i) and minimizes the
steady-state error due to the unit step command. What is the time constant of the
closed-loop system for this gain?

(c) (5 points) Next consider a proportional-integral (PI) control law:

u(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ (3)

where e(t) = r(t) − y(t) is the tracking error. Combine the system model (Equation 1)
and PI controller (Equation 3) to obtain a model of the closed-loop system in the form:

ÿ + a1ẏ + a0y = b1ṙ + b0r (4)

How do the damping ratio and natural frequency depend on Kp and Ki? What is the
steady state error if r is a unit step?

(d) (10 points) Keep the value of Kp designed in part b) and choose Ki to obtain a damping
ratio of ζ = 0.7. For these PI gains, what are the estimated maximum overshoot and 5%
settling time (neglecting the i effect of the zero)?

(e) (5 points) Plot the output response y(t) due to a unit step r for both the P and PI
controllers. The closed-loop with the PI controller has a zero due to the term b1ṙ. Briefly
explain how this zero affects the response.

Solution.

(a) Note that the magnitude |u (t) | of the control law is directly proportional to the difference
between the state value and the reference value. i.e. |r (t)− y (t) | via the gain Kp. Using
the hint we see that,

max
t
|u (t)| = |Kp| |r (0)− y (0)| = |Kp| |1− 0| = |Kp|

Therefore a preliminary condition for |u (t) | < 1 for all t ∈ R+ is that |Kp| < 1. However,
note that we can write:

ẏ = −0.5y + 2u = −0.5y + 2Kpr − 2Kpy = −y (0.5 + 2Kp) + 2Kpr

and so when Kp = 0 we get a stable autonomous system with eigenvalue 1/2. On the
other hand, for any constant reference signal r (t) ≡ const. we have that Kp < −0.25 will
result in an unstable system. But note, that by solving for y(t) we see that further we
need,

|u(t)| =
∣∣∣∣Kp

(
1− 2Kp

0.5 + 2Kp

)∣∣∣∣ < 1

Therefore, the acceptable range is Kp ∈ [−0.2, 1].
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(b) For Kp ∈ [−0.2, 1] it is clear that steady-state error to a unit-step reference input is
maximized at the left end-point of the interval and minimized at the right end-point. To
see why derive the transfer function,

Y (s)

R (s)
=

2Kp

s+ 1/2 + 2Kp

and we see that for higher Kp the steady-state value approaches 1. Hence choose Kp = 1
to satisfy the constraint. Then

H (s) =
2

s+ 5/2
=⇒ τ = 2/5

(c) Combining (1) and (3) into a single second order system results in an ODE of the form
(4) with

a0 = 2Kp + 1/2, a1 = 2Ki, b0 = 2Ki and b1 = 2Kp

The characteristic polynomial then is:

s2 + s (2Kp + 1/2) + 2Ki, =⇒ ωn =
√

2Ki and ζ =
4Kp + 1

4
√

2Ki

For a unit-step reference signal this results in zero steady state error.

(d) Plugging in Kp = 1 and ζ = 7/10 into the last equation above yields that Ki =
625

392
. We

know,

Mp = exp

(
−ζπ√
1− ζ2

)
= e
−

7π√
51 u 4.6%

and for 5% settling time,

Ts =
− ln (5/100)

ζωn
=
− ln (5/100)

5/4
=

4 ln (20)

5
u 2.4s

(e) The responses are plotted in Figure 1.
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Figure 1: The response of (1) to a simple P− controller and the PI− controller of (3),
.

The zero causes a faster response (shorter rise time) at the expense of an initial overshoot.
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Problem 2. (20 points) Consider the following first order system:

ÿ − 2ẏ + y = u, y(0) = 0

with a PD controller in the form ut = Kp(r(t)− y(t))−Kdẏ(t).

(a) What is the ODE model for the closed loop from r to y?
(b) Choose (Kp,Kd) so that the closed loop system is stable and has (ωn, ζ) = (2, 0.5).
(c) What is the steady state error if r is a unit step reference?
(d) Would you increase or decrease Kp to reduce the steady state error?

Solution.

(a) The required ODE is given by:

ÿ(t) + (Kd − 2)ẏ(t) + (Kp + 1)y(t) = Kpr(t) (5)

(b) We can derive the transfer function as follows:

H(s) :=
Y (s)

R(s)
=

Kp

s2 + (Kd − 2)s+ (Kp + 1)

=

(
Kp

Kp + 1

)
Kp + 1

s2 + (Kd − 2)s+ (Kp + 1)

So, ω2
n = Kp + 1 and 2ζωn = (Kd − 2). This means Kp = ω2

n − 1 = 3 and Kd =
2× 0.5× 2 + 2 = 4.

(c) lim
t→∞

y(t) = lim
s→0

H(s) =
Kp

Kp + 1
. (FVT applies here since H(s) is clearly stable by con-

struction). This means the steady state error lim
t→∞

r(t)− y(t) = 1− Kp

Kp + 1
=

1

Kp + 1
.

(d) Clearly you would increase Kp to reduce steady state error.

Figure 2: A diagram of a unity feedback system.

Problem 3. (20 points) Consider the unity feedback system in Figure 2. Let the plant’s transfer
function be given by:

P (s) =
6.32

s2 − 0.12

Suppose our controller is given by �����K(s) = 4. Can we choose K(s) as a PI controller to stabilize
the closed-loop system from r to y? Apply the Routh-Hurwitz criterion to determine this.

Solution.

If our controller K is given by a PI controller, then K (s) = Kp +
Ki

s
and the transfer function

for the closed loop is given by G (s) =
K (s)P (s)

1 +K (s)P (s)
which is:

G (s) =
158 (Ki +Kps)

25s3 + (158Kp − 3)s+ 158Ki
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From Routh-Hurwitz criterion for a third order polynomial x3 + ax2 + bx+ c we know that for
it be stable we need a > 0, b > 0 and 0 < c < ab. Since here a = 0 for any choice of Kp and Ki

this system cannot be stabilized by a PI control.

Problem 4. Figure 3 below shows the key forces on a car. By Newton’s second law, the
longitudinal motion of the car is modeled by the following first-order ODE:

mv̇(t) = Fnet(t)− Faero(t)− Froll − Fgrav(t) (6)

where v is the velocity (
m

sec
), m = 2085kg is the mass, and the forces are given by:

• Fnet is the net engine force. For simplicity, assume this force is proportional to the

throttle angle: Fnet = ku where u := engine throttle input (deg) and k = 40
N

deg
is the

force constant. The engine throttle is physically limited to remain within 0o ≤ u ≤ 90o.

• Faero is the aerodynamic drag force. For this problem we will model this as Faero = b0+b1v

where b0 = −336.4N and b1 = 23.2
N · sec
m

. This approximation is accurate for velocities

near v = 29
m

sec
.1

• Froll = 228N is the rolling resistance force due to friction at the interface of the tire and
road.

• Fgrav is the force due to gravity. This is given by Fgrav = mg sin(θ) where θ is the slope

of the road (rads) and g = 9.81
m

sec2
is the gravitational constant.

Figure 3: Free body diagram for a car.

Additional details on the model are given in Example 2.1 of the notes. Putting these pieces
together yields the following first-order ODE:

2085v̇(t) + 23.2v(t) = 40u(t) + 108.4− Fgrav(t) (7)

The input is the throttle u and the output is the velocity v. The gravitational force Fgrav is a dis-
turbance. The homework contains a Simulink diagram CruiseControlSim.mdl that imple-
ments the vehicle dynamics. You can either implement the dynamics by yourself or use the pro-
vided Simulink model. For your convenience, there is also an m-file CruiseControlPlots.m
that can be used as a template for your answers (you can also just use your own template).

1Additional details (not required to complete this problem): A better approximation for the aerodynamic drag

is Faero = cDv2 with cD = 0.4
N · sec2

m2
. This is a nonlinear function of the velocity. We can approximate this

by the linear function cDv2 ≈ b0 + b1v. This approximation is obtained by performing a Taylor series around

the velocity v̄ = 29
m

sec
.

4



ECE 486 Solution Set 3 Fall 2021

(a) (5 points) Assume the car is on flat road so that θ(t) = 0rads and Fgrav(t) = 0N . What is

the open-loop (constant) input ū required to maintain a desired velocity of vdes = 29
m

sec
?

(b) (5 points) Simulate the system with the input ū, initial condition v(0) = 29
m

sec
, and the

following gravitational force:

Fgrav(t) =

{
0N t < 10sec
350N t ≥ 10sec

Submit a plot of velocity v versus time t. Note that the gravitational force of 350N
corresponds to a very small road slope of ≈ 1o. Observe that this small slope causes a
large deviation in the vehicle velocity.

(c) (10 points) Let e(t) = vdes − v(t) denote the tracking error between the desired velocity

vdes = 29
m

sec
and actual velocity v(t). Consider a PI controller of the following form:

u(t) = ū+Kpe(t) +Ki

∫ t

0
e(τ) dτ (8)

where ū is the open-loop input computed in part (a). Choose the PI gains so that the
cruise control system is stable and rejects disturbances due to changing road slopes within
≈ 10sec. The closed-loop should also be over or critically damped as oscillations are
uncomfortable for the driver. Hint: Note that ū is chosen to maintain a desired velocity

vdes = 29
m

sec
when on flat road θ = 0o. In other words, ū is chosen to satisfy 23.2vdes =

40ū+ 108.4. Thus substituting the expression for u(t) (Equation 8) into the longitudinal
dynamics (Equation 7) yields:

2085v̇(t) + 23.2v(t) = 23.2vdes + 40

(
Kpe(t) +Ki

∫ t

0
e(τ) dτ

)
− Fgrav(t)

This closed-loop ODE can be used to select your gains.

(d) (10 points) Modify the Simulink diagram to include your PI controller. Simulate the

closed-loop system with the your PI controller, initial condition v(0) = 29
m

sec
, and the

following gravitational force:

Fgrav(t) =

{
0N t < 10sec
1400N t ≥ 10sec

Note that the gravitational force of 1400N corresponds to a road slope of ≈ 4o. You will
need to update the Simulink block that generates this gravitational force.
Submit plots of velocity v versus time t and throttle input u versus t. Verify that the
throttle input remains within the physical limits. You should also submit the Simulink
diagram modified to include your PI controller.

Solution.

(a) We have that
23.2vdes = 40ū+ 108.4 =⇒ ū = 14.11.

(b) See Figure 4 for the plot, and attached Simulink file hw3 1b.slx for the Simulink dia-
gram.
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Figure 4: 1(b) Velocity vs Time plot.

(c) Now,
e(t) = vdes − v(t) =⇒ ė(t) = −v̇(t), ë(t) = −v̈(t).

Substituting this in the equation given in the hint, we get

−2085ė(t)− 23.2e(t) = 40

(
KP e(t) +Ki

∫ t

0
e(τ)dτ

)
− Fgrav(t),

rearranging which we get the closed loop error dynamics as

2085ė(t) + (23.2 + 40Kp)e(t) + 40Ki

∫ t

0
e(τ)dτ = Fgrav(t).

We assume that the gravitational force acts as a step input of magnitude Fg here. This
is done purely to make the analysis of the system easier, and will be close to reality if the
slopes on the road are more or less constant for large enough intervals of time. Taking
Laplace transforms, we can then say that

E(s) =
Fg

2085s2 + (23.2 + 40Kp)s+ 40Ki
,

which means the error is the impulse response of a second order system. There are
two requirements given in the question, one of which is that the system needs to be
overdamped. This is easy to ensure now that we have the closed loop response in the form
of a second order system response.

The other requirement was to ensure that the disturbances are rejected within 10s, whose
precise description was for you to figure out. One way to do this is to ensure that the 95%
settling time of the error dynamics is less than 10s, which means the effects of a changing
road slope (modeled as a step input into the error dynamics) is reduced to within 5%
of its initial value in 10s. This is a reasonable model of what it means to “reject the
disturbances” in 10s. We see that

2ζωn =
23.2 + 40Kp

2085
, ω2

n =
40Ki

2085
.

The 95% settling time is approximately
3

ζωn
. A subtle point to note is that the 95%

settling time as given above was computed for the step response of a second order system,
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while the error here is the impulse response of a second order system. However, a similar
analysis holds in this case as well giving the same formula. We need to ensure

6.6ζ − 1.6

ωn
≤ 10, ζ ≥ 1.

Here I have used the approximation formula for settling time when ζ > 0.7 in the first
condition. Let us fix ζ = 1.1, which gives us

5.66

ωn
≤ 10 =⇒ ωn ≥ 0.566

Let us choose ωn = 0.566 which gives

Ki =
2085

40
× 0.566× 0.566 = 16.68.

We can also find Kp as

2× 1.1× 0.566 =
23.2 + 40Kp

2085
=⇒ Kp =

1.25× 2085− 23.2

40
= 64.57.

Figure 5: 1(d) Velocity vs Time plot.

Figure 6: 1(d) Throttle vs Time plot.

(d) See Figure 5 and Figure 6 for the plots. I used Kp = 64.57 and Ki = 16.68. The
requirements are clearly met reasonably.
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