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Problem 1. Consider the dynamics for the mass-spring system, as depicted in Figure 1. The
dynamics are governed by the following state-space model:

[
ẋ1
ẋ2

]
=

[
0 1

− k
m
− ρ

m

] [
x1
x2

]
+

[
0
1

m

]
u

y =
[
1 0

] [x1
x2

]

Here, k is the spring constant and ρ is the friction coefficient (yes, the mass m in the figure
does not touch the floor, but assume it does! ).

Figure 1: The mass-spring system.

(a) (5 points) Find the transfer function of this system from u to y.
(b) (15 points) Suppose that the C matrix is replaced, such that:

y =
[
c1 c2

] [x1
x2

]

Recalculate the transfer function with this sensor model. Write ωn and ζ in terms of
k, ρ,m. Draw a block diagram for this transfer function using integrator, summation, and
gain blocks.

Solution.
Recall that for a general state-space model:

ẋ = Ax+Bu

y = Cx+D

the transfer function from u to y is: G(s) = C(sI −A)−1B +D.

(a) We have A =

[
0 1

− k
m
− ρ

m

]
, B =

[
0
1

m

]
, C =

[
1 0

]
, and D = [ ]. Therefore, we have:

G1(s) = C(sI −A)−1B +D

=
[
1 0

]
([

s 0
0 s

]
−
[

0 1

− k
m
− ρ

m

])−1 [
0
1

m

]

=
1

ms2 + ρs+ k
.
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(b) In this case, we have the same A and B matrices but with different D matrix. Therefore,
we have:

G2(s) = C(sI −A)−1B +D

=
[
c1 c2

]
([

s 0
0 s

]
−
[

0 1

− k
m
− ρ

m

])−1 [
0
1

m

]

=
c1 + c2s

ms2 + ρs+ k
=
c1/m+ (c2/m)s

s2 + 2ζωns+ ω2
n

.

where 2ζωn =
ρ

m
, ω2

n =
k

m
. Hence we have:

ωn =

√
k

m
, ζ =

ρ

2
√
km

.

The block diagram is shown as follows:

1
s

1
s

·w c1
y(t)w··w1

m
m ··wu(t)

c2

ρ

k

− −

Figure 2: The block diagram for Problem 1.

Problem 2. Consider the transfer function:

H(S) =
25

s2 + 6s+ 25

(a) (5 points) Draw a block diagram for H(s) using integrator, summation, and gain blocks.
(b) (5 points) Suppose you are given the following time-domain specs: rise time tr ≤ 0.6 and

settling time ts ≤ 1.6. (Here we’re considering settling time to within 5% of the steady-
state value.) Plot the admissible pole locations in the s-plane corresponding to these two
specs. Does this system satisfy these specs?

(c) (5 points) Repeat the previous problem for the specs: rise time tr ≤ 0.6, settling time
ts ≤ 1.6, and magnitude Mp ≤ 1/e2. Plot the admissible pole locations; does this system
satisfy these specs?

(d) (5 points) Draw a block diagram for (s + 1)H(s) using integrator, summation, and gain
blocks.

Solution. (a) The block diagram can be found in Figure 3.
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1
s

1
s25u(t) y(t)

6

25

− −
·y(t)··y(t)

Figure 3: The block diagram for Problem 2(a).
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(c) Repeat the previous problem for the specs: rise time tr  0.6, settling time ts  1.6,
and peak time tp  1. Plot the admissible pole locations; does this system satisfy these
specs?

Solution.

Figure 5: From left to right, A, B and C - solutions to Problem 8

(a) Given that tr =
1.8

!n
and ts =

3

�
for the specification that tr  6/10 and ts  16/10

we conclude that the requirements translate to !n � 3 and � > 15/8. The admissible
pole location is the shaded region in the Figure 5 A below and the poles of the system,
�2 ± 2

p
3 are the two blue dots =) constraints are satisfied.

(b) Given that

Mp = exp

 
�⇣⇡p
1 � ⇣2

!
= exp (�⇡ arctan ✓)

we can compute Mp  1/e2 =) ✓ � 0.74. The new admissible pole locations are
shaded blue in Figure 5 B. Since the system poles fall inside the shaded region, the
constraints are being met.

(c) Lastly, since tp =
⇡

!d
given tp  1 we have that !d � ⇡. For this, the admissible region

is the doubly shaded region in Figure 5 C. Again, the constraints are being satisfied.

Software usage

Every couple of homeworks, software scripts/notebooks from MATLAB/Mathematica will
be posted along with the typeset solutions showing how software can be used to solve some
of the homework problems. The next few pages show MATLAB and Mathematica code to
solve this homework set.

Matlab (Problem 4)

See the attached .mlx file.

Mathematica (Problems 5-8)

8
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See the attached .mlx file.

Mathematica (Problems 5-8)

8

Figure 4: Admissible pole locations for 2(b) and 2(c).

(b) Consider a second order system:

H(s) =
b0

s2 + 2ζωns+ ω2
n

.

If ζ < 1, we have two poles: s = −ζωn ± jωn
√

1− ζ2. We want tr ≤ 0.6 and ts ≤ 1.6,
which is equivalent to say:

1.8

ωn
< 0.6,

3

ζωn
< 1.6 =⇒ |s| ≥ 3, Re{s} < −15

8
.

Therefore, the admissible pole locations in the s-plane can be found in Figure 4 (left plot).
For this specific system, we have 2ζω = 6, ω2

n = 25, we have

1.8

ωn
= 0.36 < 0.6,

3

ζωn
= 1 < 1.6.

The poles fall into the admissible region, so this system satisfies these specs.
(c) For the magnitude, we have:

Mp ≤
1

e2
=⇒ e

− ζ√
1−ζ2

π ≤ e−2 =⇒ ζ√
1− ζ2

≥ 2

π
=⇒ |Re{s}|

|Im{s}| ≥
2

π

Combining the conditions obtained in (b), the admissible pole locations in the s-plane can
be found in Figure 4 (right plot). For this specific system, we have

|Re{s}|
|Im{s}| =

3

4
≥ 2

π
.
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The poles fall into the admissible region, so the system satisfies the specs.
(d) The block diagram can be found in Figure 5.

1
s

1
s

·w 25 y(t)w··wu(t)

25

6

25

− −

Figure 5: The block diagram for Problem 2(d).

Problem 3. (15 points) Consider the unity feedback system in Figure 6. Let the plant’s transfer
function be given by:

P (s) =
1

s3 + 2s2 + 3s+ 1

Suppose our controller is given by K(s) = 4. What is the transfer function from R to Y ? How
to convert that transfer function to a linear state-space model? Use the Routh-Hurwitz criterion
to determine whether this model is stable or not.

Figure 6: A diagram of a unity feedback system.

Solution.

The transfer function from R to Y is given by G (s) =
K(s)P (s)

1 +K(s)P (s)
which is

G (s) =
4

s3 + 2s2 + 3s+ 5

Recall that one state space model (called the controllable canonical form) for a system with
closed loop transfer function:

N(s)

D(s)
=
b0s

n + b1s
n−1 + · · ·+ bn−1s+ bn

sn + a1sn−1 + · · ·+ an−1s+ an
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is given by

A =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
... 0

0 0 0 . . . 1
−an −an−1 −an−2 . . . −a1




B =
[
0 0 . . . 0 1

]T

and
C =

[
bn − anb0 bn−1 − an−1b0 bn−2 − an−2b0 . . . b1 − a1b0

]
D = b0

Therefore for us we have,

A =




0 1 0
0 0 1
−5 −3 −2


 B =




0
0
1


 C =

[
4 0 0

]
and D = 0

The model is stable because we the table below and there are no sign changes in the first row.

s3 s2 s1 s0

1 2 0.5 5
3 5 0 0

Problem 4. (30 points) Consider the six transfer functions given below. For each Gi(s), i =
1, 2, . . . 6, specify the following in turn: (a) poles, (b) zeros (if any), (c) stable or unstable, and
(d) steady-state gain before proceeding to the next. Use these answers to match each of
the six transfer functions with one of the unit step responses in the figure below. All responses
were generated with zero initial conditions.

G1(s) =
−4s+ 4

s2 + 3s+ 4
G2(s) =

4

s2 + 0.3s+ 4
G3(s) =

4

s2 + 3s+ 4

G4(s) =
−s+ 3

s− 1
G5(s) =

300

s2 + 101s+ 100
G6(s) =

−3

s+ 1

0 2 4

-0.5

0

0.5

1

Response D

0 2 4 6 8
0

0.5

1

1.5

2
Response C

0 2 4 6 8
0

0.5

1

Response F

0 2 4 6 8
-2000

0

2000

4000

6000
Response E

0 2 4
0

1

2

3
Response A

0 2 4
-3

-2

-1

0
Response B
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Solution.
The solution is as per Table 1

(a) Poles (b) Zeros (c) Stable? (d) Steady-state gain Response

G1(s) −3/2± i
√

7/2 1 Yes 1 D

G2(s)
1

20

(
−3± i

√
1591

)
None Yes 1 C

G3(s) −3/2± i
√

7/2 None Yes 1 F

G4(s) 1 3 No N/A E

G5(s) −100 and −1 None Yes 3 A

G6(s) −1 None Yes -3 B

Table 1: Table of results for Problem 4

The only unstable system is G4(s) and it matches with the unstable response E. The steady
state gains of G5(s) and G6(s) make it clear they match to response A and B respectively.
Between G2(s) and G3(s) they have the same natural frequencies but vastly different damping
ratios; absent any zeros this makes it clear that the lightly dampedG2(s) corresponds to response
C and the more damped G3(s) corresponds to response F . Finally note G1(s) = G3(s)−sG3(s)
so that the step response of G1(s) will the step response of G1(s) less its derivative.

Problem 5. (15 points) Without a computer, determine whether or not the following polyno-
mials have any RHP roots:

(a) s6 + 2s5 + 3s4 + s3 + s2 − 3s+ 5
(b) s4 + 10s3 + 10s2 + 20s+ 1

(c) s4 + 10s3 + 10s2 + 1

Solution. (a) This system is unstable,

s6 s5 s4 s3 s2 s1 s0

1 2 5/2 -1 -15 -22/3 5
3 1 5/2 -7 5 0 0
1 -3 5 0 0 0 0
5 0 0 0 0 0 0

Table 2: Routh table for part (a) - note the table is transposed

(b) This system is stable.
(c) This system is unstable.

s4 s3 s2 s1 s0

1 10 8 75/4 1
10 20 1 0 0
1 0 0 0 0

s4 s3 s2 s1 s0

1 10 10 -1 1
10 0 1 0 0
1 0 0 0 0

Table 3: Routh tables for part (b) and (c) - note the tables are transposed
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