
ECE 486 Midterm 2 Solutions Fall 2021

Problem 1.

(a) (10 points) Let G(s) be a plant transfer function with 13 poles and 12 zeros. Suppose
that all 12 zeros have negative real parts. Show that a large enough proportional feedback
gain K (in standard negative unity feedback configuration) makes the closed-loop system
stable.

(b) (10 points) What is a lag controller? Write down a transfer function of a lag controller.
Be sure to explain how it differs from a lead controller. Give an intuitive explanation for
the name “lag controller”. Your explanation can rely either on the frequency response
formula or on Bode plots.

Solution.

(a) We can answer this question using root-locus principles. We have 12 branches that go
from poles to the LHP zeros. One more branch goes to negative infinity along the negative
real axis. We can see this either by looking at the real axis part of the root-locus (to the
left of all real axis poles and zeros) or from the rule for asymptotes:

180◦

n−m
= 180◦

where in the question n = m + 1. Therefore for large K the root-locus is in the left half
plane.
Note: Attempts to solve this problem using the transfer function or Bode plots are pretty
much useless; and will only accrue little partial credit.

(b) A lag controller is one whose transfer function takes the form

D (s) =
s+ zlag
s+ plag

with zlag > plag (which is the opposite with lead). The intuitive explanation for the name
lag controller is that if the input is cos (ωt) the output is M cos (ωt+ φ) where

φ = ∠
jω + zlag
jω + plag

= ∠ (jw + zlag)− ∠ (jω + plag) < 0

since zlag > plag which subtracts phase. Hence “lag”. This can also be seen from the Bode
plot which dips below zero.

Problem 2.

(a) (10 points) Consider the following system G(s) and sinusoidal input:

− 3ẏ(t)− 2y(t) = 7u(t)

u(t) = 6 cos(t+ 4)

y(0) = 0

What is the magnitude and phase of G(1j)? Is the steady-state output bounded? If yes,
what is it? Draw the Bode plots (both magnitude and phase) by hand. How large is the
corner frequency?

(b) (10 points) Consider the following system G(s) and sinusoidal input:

ÿ(t) + 0.1ẏ(t) + 4y(t) = u̇(t) + 2u(t)

u(t) = − cos(2t)

y(0) = 0

What is the magnitude and phase of G(2j)? Is the steady-state output bounded? If yes,
what is it? Draw the Bode plots (both magnitude and phase) by hand.
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(c) (10 points) Figure 1 shows an input u(t) and the corresponding output y(t) generated by
a linear system G(s). The input has the form u(t) = A0 cos(ω0t).
What are the values of A0 and ω0 for the input signal? What is the magnitude |G(jω0)|?
What is the phase ∠G(jω0) in degrees? Based on Figure 1, what can we say about the
Bode plot of G(s)?
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Figure 1: Input u(t) and output response y(t) for system G(s).

Solution.
The key to solving this system is the fact that for a sinusoidal input u (t) = A cos (ωt) an LTI

system G with zero initial conditions responds with a system output

y (t) = A |G (jω)| cos (ωt+ ∠G (jω))

(a) We derive the transfer function as G (s) =
−7

3s+ 2
. This gives |G (j)| =

7
√

13

13
and

∠G (j) = arctan

(
3

−2

)
= π−arctan (3/2) = 123.69◦. The steady state output is bounded

and can be readily obtained:

yss (t) = −42

13
(2 cos (t+ 4) + 3 sin (t+ 4)) (1)

The Bode plot is given in Figure 2 and the corner frequency ωc =
2

3
.

(b) Here the transfer function is given by

G (s) =
s+ 2

s2 + s/10 + 4

and so |G (2j)| = 10
√

2 and ∠G (2j) = −π/4. Again, the steady state output is bounded
and given by:

yss (t) = −10 (cos (2t) + sin (2t)) (2)

The Bode plot is given below in Figure 3:
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Figure 2: Bode plot for Part (a) of the question

Figure 3: Bode plot for Part (b) of the question

(c) From the blue waveform A0 = 2 and ω0 =
2π

80− 64
=
π

8
. Comparing with the output

wave, we get |G (jω0)| =
6

A0
= 3. Comparing their periods we have that ∠G (jω0) =

− 7

16
× 2π = −7π

8
u −157.5◦. We cannot say much about the Bode plot apart from the

fact that a point with this phase and magnitude exists on it.

Remark: As long the output was deemed bounded, points were given regardless of the fact
whether Eqns (1) or (2) were derived.

Problem 3. (20 points) For the two transfer functions and gain values given below, use the
Bode plot (generated by Matlab) to find the gain and phase margins:

(a) K = 20, and G =
1

(s− 1)(s+ 2)(s+ 6)

(b) K = 2, and G =
1

(s+ 1)3

For this problem, you are allowed to use MATLAB for drawing an accurate Bode plot. You
should explain how you use the Bode plot to calculate the gain/phase margins.

Solution.
The phase margin can be found by noting down the frequency at which |KG (jω)| = 1 (or
equivalently 0 db) on the Bode magnitude plot and then calculating how far the Bode phase
plot is from the instability at −180◦ at this frequency.

The gain margin can be found by noting down the frequency at which ∠L(jω0) = −180◦ on
the Bode phase plot and then calculating 1/|L(jω0)|.
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1. The phase margin is calculated to be 8.75◦. The gain margin is [0.6, 2].

Figure 4: Bode plot for Part (a) of the question

2. The phase margin is calculated to be 67.59◦. The gain margin is 4.

Figure 5: Bode plot for Part (b) of the question

Problem 4. For the following two loop transfer functions

(a) L(s) =
s+ 10

2s+ 5
.

(b) L(s) =
2

(s− 1)(s2 + 2s+ 4)
.

Draw the Nyquist plots by hand. Consider a standard closed-loop system with the loop transfer
function given by L(s). Apply the Nyquist stability theorem to predict the number of closed-
loop poles of the feedback system in the RHP. Is the closed-loop system stable or unstable?

Solution.

(a) See Figure 6 for the hand drawn Bode plot. The magnitude decreases strictly from 2 to
0.5, while the phase starts at 0, decreases to a minimum of around -12 and then increases
back to 0. This means the Nyquist plot hits the x or y axis only at 2 and 0.5 corresponding
to ω = 0 and ω =∞. So the Nyquist plot from 0 to ∞ can only be an arc from 2 to 0.5
below the x axis since phase is always negative here. This arc corresponds to the part of
the Nyquist plot in Figure 7 marked by a single arrow. The Nyquist plot from −∞ to
0 can be obtained by mirroring the part from 0 to ∞, and this portion is marked with
double arrows in Figure 7.
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Figure 6: Bode plot of system 4a

Figure 7: Nyquist plot of system 4a

Clearly, the number of windings around -1, N = 0 and P = 0. So Z = 0 and the closed
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loop is stable.
(b) See Figure 8 for the hand drawn Bode plot. The final phase plot is drawn in green. The

magnitude decreases strictly from 0.5 to 0, while the phase starts at -180, increases for
a while, and then decreases to -270. This means the Nyquist plot starts at -0.5 on the
negative x-axis, goes above the x axis for a while, hits the x-axis back at a point between
-0.5 and 0, goes below the x axis and finally approaches the origin tangent to the negative
y-axis as ω goes to infinity. This path is marked with a single arrow in Figure 9. The
rest of the nyquist plot can be obtained by mirroring, as indicated with double arrows in
Figure 9.

Figure 8: Bode plot of system 4a
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Figure 9: Nyquist plot of system 4a

Clearly, the number of windings around -1, N = 0 and P = 1. So Z = 1 and the closed
loop is unstable.
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