## ECE 486 (Control Systems) – Homework 11

Due: December 8

**Problem 1.** Consider the single-input, single-output transfer function:

$$Y(s) = \frac{s+1}{s^2 + 2s + 2}U(s)$$

- (a) Find a second-order state-space model that represents this transfer function.
- (b) For this state-space model, calculate a state-feedback controller u = -Kx + r that places the closed-loop poles at -4 and -25.
- (c) Construct a stable observer to estimate x based on the known inputs u and observations y. You may use MATLAB for this part.
- (d) With the controller and observer from the previous problems in place, calculate  $k_r$  such that  $u = -K\hat{x} + k_r r$  yields a closed-loop system Y/R with unity gain. You may use MATLAB.
- (e) Plot the step response using MATLAB.

**Problem 2.** Consider the single-input, single-output transfer function:

$$G_p(s) = \frac{1 - s/2}{1 + s/2} \frac{1}{s^2}$$

- (a) Find a third-order state-space model that represents this transfer function.
- (b) For this state-space model, calculate a state-feedback controller u = -Kx + r that places the closed-loop poles at -4, -13, and -25. You may use MATLAB to calculate this controller, but not to find the state-space model.
- (c) Construct a stable observer, and put this together to form a compensator of the form  $U = -G_c Y + G_r R$ . You may use MATLAB.
- (d) Calculate the Nyquist plot of  $G_cG_p$ . You may use MATLAB to do so. Is the system stable? If so, calculate the gain and phase margins.

**Problem 3.** Consider the following nonlinear system

$$\dot{x} = -4x - 2u + u^3$$

- (a) Find an equilibrium  $(\bar{x}, \bar{u})$  with  $\bar{u} = 2$ .
- (b) Linearize the dynamics around  $(\bar{x}, \bar{u})$ .