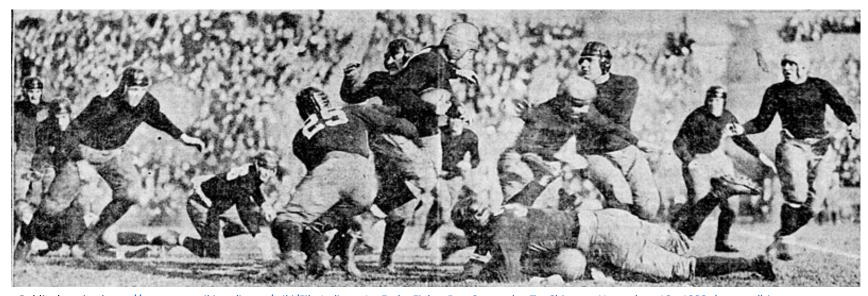
# CS 440/ECE448 Lecture 32: Adversarial Learning & Mechanism Design

Mark Hasegawa-Johnson
These slides are in the public domain.



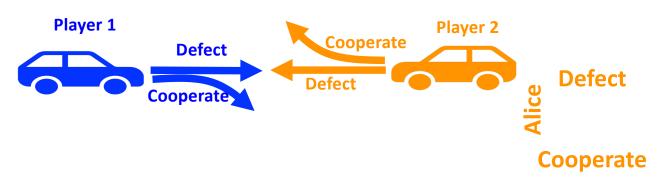
Public domain. https://commons.wikimedia.org/wiki/File:Indiana In Early Fight, But Succumbs To Chicago, November 10, 1923 (cropped).jpg

#### Outline

- Stability of a Nash equilibrium
- The Paparazzi game: Games with no stable equilibria
- Generative adversarial network
- Mechanism design: encourage desirable behavior
- Mechanism design: gather information

#### Review: Game of chicken

# Bob Defect Cooperate



| -10 | 2 -1 |
|-----|------|
| -1  | 1    |

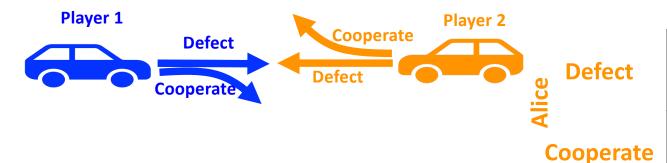
- Remember the game of chicken? It has three Nash equilibria
  - Alice defects, Bob cooperates. Rewards:  $r_A=2$ ,  $r_B=-1$ .
  - Alice cooperates, Bob defects. Rewards:  $r_A = -1$ ,  $r_B = 2$ .
  - Each of them defects with probability  $\frac{1}{10}$ , independently at random. Rewards:  $E[r_A] = E[r_B] = \frac{8}{10}$ .
- The mixed equilibrium is unstable:
  - If either player changes their action probabilities just a little bit, then the other player's actions no longer have equal expected reward.

# Notation for mixed strategies

# Bob

#### **Defect**

Cooperate



| -10         | 2 -1 |
|-------------|------|
| <b>2</b> -1 | 1    |

• Let's say that each player chooses an action according to these probabilities:

$$p_A = \begin{bmatrix} P(A=d) \\ P(A=c) \end{bmatrix} = \begin{bmatrix} \frac{1}{1+e^{z_A}} \\ \frac{1}{1+e^{-z_A}} \end{bmatrix}, \qquad p_B = \begin{bmatrix} P(B=d) \\ P(B=c) \end{bmatrix} = \begin{bmatrix} \frac{1}{1+e^{z_B}} \\ \frac{1}{1+e^{-z_B}} \end{bmatrix}$$

...and gets these rewards as a result:

$$R_A = \begin{bmatrix} -10 & -1 \\ 2 & 1 \end{bmatrix}, \qquad R_B = \begin{bmatrix} -10 & 2 \\ -1 & 1 \end{bmatrix}$$

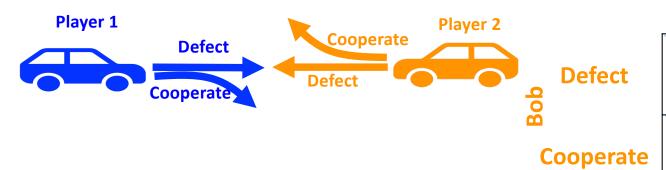
• Using this notation, the expected rewards are:

$$E[r_A] = \boldsymbol{p}_A^T \boldsymbol{R}_A \boldsymbol{p}_B, \qquad E[r_B] = \boldsymbol{p}_A^T \boldsymbol{R}_B \boldsymbol{p}_B,$$

# Notation for mixed equilibrium

# Alice

**Defect** Cooperate



| -10 | <b>-1</b> |
|-----|-----------|
| -1  | 1         |

• A mixed Nash equilibrium is a pair of strategies  $(z_A, z_B)$  such that neither player can improve their expected reward by unilaterally changing, strategy, i.e.,

$$\frac{\partial E[r_A]}{\partial z_A} \le 0, \qquad \frac{\partial E[r_B]}{\partial z_B} \le 0,$$

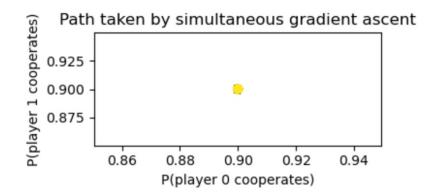
• For the game of chicken, this is true:

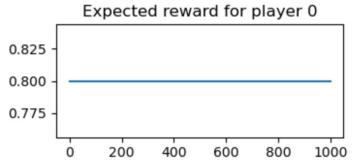
$$\frac{\partial E[r_B]}{\partial z_B} = \boldsymbol{p}_A^T \boldsymbol{R}_B \frac{\partial \boldsymbol{p}_B}{\partial z_B} = \begin{bmatrix} \frac{1}{10}, \frac{9}{10} \end{bmatrix} \begin{bmatrix} -10 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} -\frac{9}{100} \\ \frac{9}{100} \end{bmatrix} = 0$$

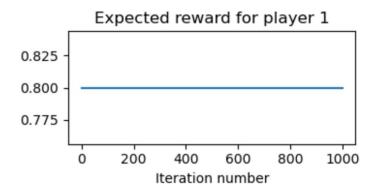
We can prove that a mixed equilibrium is really an "equilibrium" by using simultaneous gradient ascent:

$$z_A = z_A + \eta \frac{\partial E[r_A]}{\partial z_A}$$
$$z_B = z_B + \eta \frac{\partial E[r_B]}{\partial z_B}$$

- An equilibrium is a pair of strategies  $(z_A, z_B)$  that neither player has any reason to change.
- When we perform gradient ascent, we find the neither player changes!





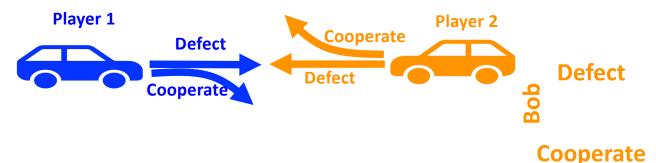


# Try the quiz!

Try the quiz!

#### What does it mean to be unstable?

# Alice Defect Cooperate



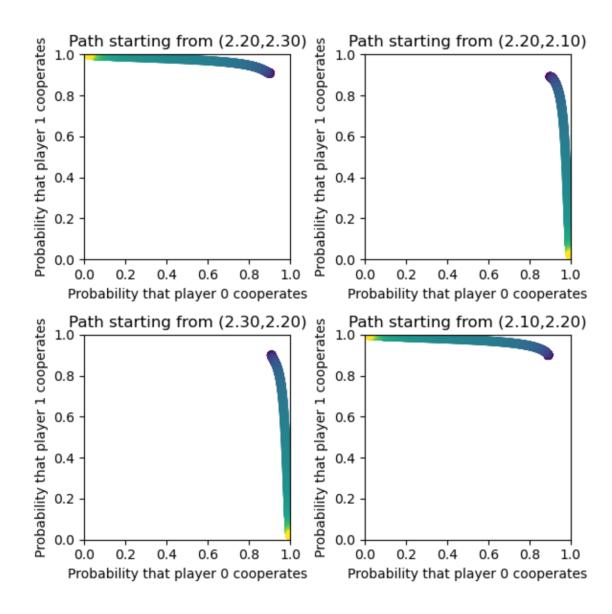
An equilibrium is unstable if a small change in the equilibrium results in a situation that causes the players to move even farther away from equilibrium. For example, suppose that Alice decides to cooperate less often,  $P(A = c) = \frac{8}{10}$  instead of  $\frac{9}{10}$ . Then

$$\frac{\partial E[r_B]}{\partial z_B} = \mathbf{p}_A^T \mathbf{R}_B \frac{\partial \mathbf{p}_B}{\partial z_B} = \begin{bmatrix} \frac{2}{10}, \frac{8}{10} \end{bmatrix} \begin{bmatrix} -10 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} -\frac{9}{100} \\ \frac{9}{100} \end{bmatrix} = +\frac{18}{1000}$$

Since  $\frac{\partial E[r_B]}{\partial z_B}$  is positive, it is rational for Bob to increase P(B=c). In response, Alice further decreases P(A=c), until eventually P(B=c)=1 and P(A=c)=0.

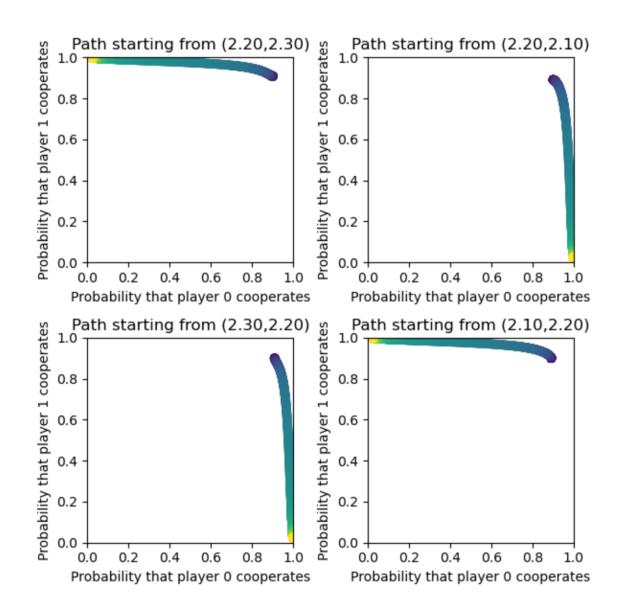
# Testing stability using simultaneous gradient ascent

If a Nash equilibrium is unstable, it will not be reached by simultaneous gradient ascent starting from any nearby starting point.



# Why is it unstable?

- If Alice cooperates with probability even slightly more than 0.9, then Bob gets better reward by always defecting -> converge to the (C,D) equilibrium.
- If Alice cooperates with probability even slightly less than 0.9, then Bob gets better reward by always cooperating -> converge to the (D,C) equilibrium.

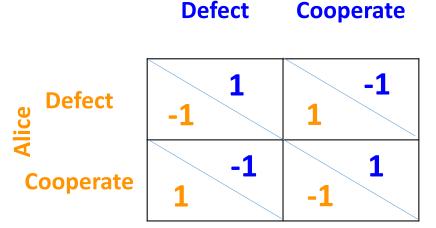


#### Outline

- Stability of a Nash equilibrium
- The Paparazzi game: Games with no stable equilibria
- Generative adversarial network
- Mechanism design: encourage desirable behavior
- Mechanism design: gather information

# The Paparazzi game

- Alice is a famous movie star. Her agent announces that she will be at Illini Union signing autographs all day, but secretly, she might go Grainger to get some work done.
- Bob is paparazzi. His job is to get Alice's photograph.
- If Alice and Bob are in the same location, Alice loses (-1), Bob wins (+1)
- If they are in different locations, Alice wins (+1), Bob loses (-1)



**Bob** 

# The Paparazzi game

Alice's strategy is

$$p_A = \begin{bmatrix} P(A=d) \\ P(A=c) \end{bmatrix} = \begin{bmatrix} 1 - \sigma(z_A) \\ \sigma(z_A) \end{bmatrix}$$

• Bob's strategy is

$$p_B = \begin{bmatrix} P(B=d) \\ P(B=c) \end{bmatrix} = \begin{bmatrix} 1 - \sigma(z_B) \\ \sigma(z_B) \end{bmatrix}$$



Defect

Cooperate

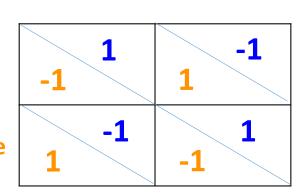
| -1   | 1 -1 |
|------|------|
| 1 -1 | -1   |

# The Paparazzi game

- Alice's strategy is  $\boldsymbol{p}_A = \begin{bmatrix} 1 \sigma(z_A) \\ \sigma(z_A) \end{bmatrix}$
- Bob's strategy is  $\boldsymbol{p}_B = \begin{bmatrix} 1 \sigma(z_B) \\ \sigma(z_B) \end{bmatrix}$

Bob
Defect Cooperate

Defect
Cooperate



Alice's expected reward is

$$E[r_A] = \boldsymbol{p}_A^T \boldsymbol{R}_A \boldsymbol{p}_B = \begin{bmatrix} 1 - \sigma(z_A), \sigma(z_A) \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 - \sigma(z_B) \\ \sigma(z_B) \end{bmatrix}$$

Bob's expected reward is

$$E[r_B] = \boldsymbol{p}_A^T \boldsymbol{R}_B \boldsymbol{p}_B = \begin{bmatrix} 1 - \sigma(z_A), \sigma(z_A) \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 - \sigma(z_B) \\ \sigma(z_B) \end{bmatrix}$$

# The Nash Equilibrium

Bob

Defect Cooperate

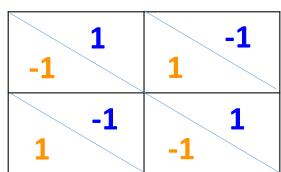
Alice's expected reward is

$$E[r_A] = \boldsymbol{p}_A^T \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \boldsymbol{p}_B$$

Bob's expected reward is

$$E[r_B] = \boldsymbol{p}_A^T \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \boldsymbol{p}_B$$





• The Nash equilibrium is:

$$\boldsymbol{p}_A = \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}$$
,  $\boldsymbol{p}_B = \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}$ 

...you can verify that this is a Nash equilibrium by noticing that

- If  $p_A = \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}$ , then Bob has no preference between cooperating and defecting, so he can choose at random.
- If  $p_B = \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}$ , then Alice has no preference, and can choose at random.

Suppose both Alice and Bob are using mixed strategies:

$$p_A = \begin{bmatrix} 1 - \sigma(z_A) \\ \sigma(z_A) \end{bmatrix}$$
,  $p_B = \begin{bmatrix} 1 - \sigma(z_B) \\ \sigma(z_B) \end{bmatrix}$ 

• On successive days, they each try to improve their strategies using gradient ascent:

$$\begin{bmatrix} z_A \\ z_B \end{bmatrix} \leftarrow \begin{bmatrix} z_A \\ z_B \end{bmatrix} + \eta \begin{bmatrix} \frac{\partial E[r_A]}{\partial z_A} \\ \frac{\partial E[r_B]}{\partial z_B} \end{bmatrix} = \begin{bmatrix} z_A \\ z_B \end{bmatrix} + \eta \begin{bmatrix} \left(\frac{\partial \boldsymbol{p}_A}{\partial z_A}\right)^T \boldsymbol{R}_A \boldsymbol{p}_B \\ \boldsymbol{p}_A^T \boldsymbol{R}_B \frac{\partial \boldsymbol{p}_B}{\partial z_B} \end{bmatrix}$$

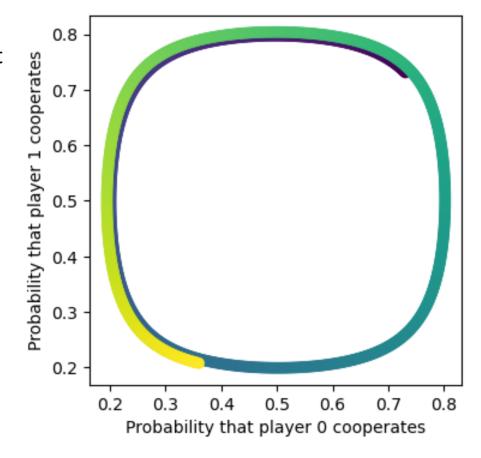
• If you start at exactly the equilibrium,  $p_A^T = \begin{bmatrix} \frac{1}{2}, \frac{1}{2} \end{bmatrix}$ ,  $p_B^T = \begin{bmatrix} \frac{1}{2}, \frac{1}{2} \end{bmatrix}$ , then gradient ascent will stay there. But this is an unstable equilibrium...

- Surprisingly, simultaneous gradient ascent fails.
- The graph at right is the sequence of vectors

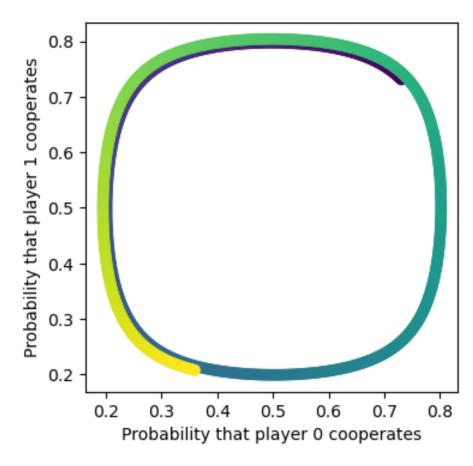
$$\begin{bmatrix} P(A=c) \\ P(B=c) \end{bmatrix} = \begin{bmatrix} 1/(1+e^{-z_A}) \\ 1/(1+e^{-z_B}) \end{bmatrix}$$

... obtained using

$$\begin{bmatrix} z_A \\ z_B \end{bmatrix} \leftarrow \begin{bmatrix} z_A \\ z_B \end{bmatrix} + \eta \begin{bmatrix} \frac{\partial E[r_A]}{\partial z_A} \\ \frac{\partial E[r_B]}{\partial z_B} \end{bmatrix}$$



- Why does it never converge?
- If Alice and Bob are in the same location, then Alice goes elsewhere
- If Alice and Bob are in different locations, then Bob follows Alice
- ... and so on, forever.



# Wait--- Doesn't gradient ascent converge?

• Yes. Gradient ascent always converges. But gradient ascent means that both  $z_A$  and  $z_B$  are chasing after the SAME goal. For example, if they're both trying to improve Alice's day, then the result would converge:

$$\begin{bmatrix} z_A \\ z_B \end{bmatrix} \leftarrow \begin{bmatrix} z_A \\ z_B \end{bmatrix} + \eta \begin{bmatrix} \frac{\partial E[r_A]}{\partial z_A} \\ \frac{\partial E[r_A]}{\partial z_B} \end{bmatrix}$$

• ...but if Alice is trying to improve her day, and Bob is trying to improve HIS day, then it might never converge:

$$\begin{bmatrix} z_A \\ z_B \end{bmatrix} \leftarrow \begin{bmatrix} z_A \\ z_B \end{bmatrix} + \eta \begin{bmatrix} \frac{\partial E[r_A]}{\partial z_A} \\ \frac{\partial E[r_B]}{\partial z_B} \end{bmatrix}$$

#### Outline

- Stability of a Nash equilibrium
- The Paparazzi game: Games with no stable equilibria
- Generative adversarial network
- Mechanism design: encourage desirable behavior
- Mechanism design: gather information

# Unsupervised learning

Given  $\mathcal{D} = \{x_1, \dots, x_n\}$ , learn G so that  $P(G = x) \approx P(X = x)$ .

Maximum likelihood: unseen cases have probability zero

$$P(G = x) = \frac{\text{# times } x \text{ occurs in } \mathcal{D}}{n}$$

Laplace smoothing: unseen cases all have the same probability

$$P(G) = \frac{k + \# \text{ times } x \text{ occurs in } \mathcal{D}}{\sum_{x \in \mathcal{X}} (k + \# \text{ times } x \text{ occurs in } \mathcal{D})}$$

# Unsupervised learning

Neither maximum likelihood nor Laplace smoothing is very good for complex random variables. For example, suppose  $\mathcal{X}$  is the set of all face images, and we want to train a neural network G so that  $P(G=x) \approx P(X=x)$ . We would prefer a network to generate images like the one on left, not the one

on right:



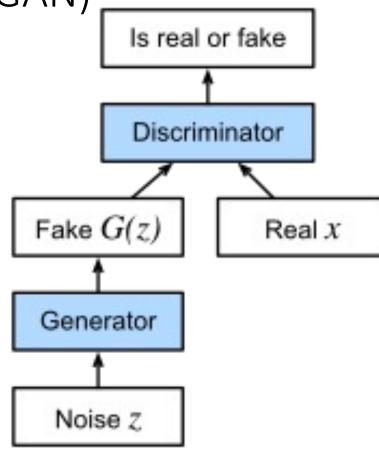
https://commons.wikimedia.org/wiki/File:Outdoors-manportrait\_(cropped).jpg



https://en.wikipedia.org/wiki/File:Pablo\_Picasso,\_1910,\_Woman\_with\_Mustard\_Pot\_(La\_Fem me\_au\_pot\_de\_moutarde),\_oil\_on\_canvas,\_73\_x\_60\_cm,\_Gemeentemuseum,\_The\_Hague.\_E xhibited\_at\_the\_Armory\_Show,\_New\_York,\_Chicago,\_Boston\_1913.jpg

Generative adversarial network (GAN)

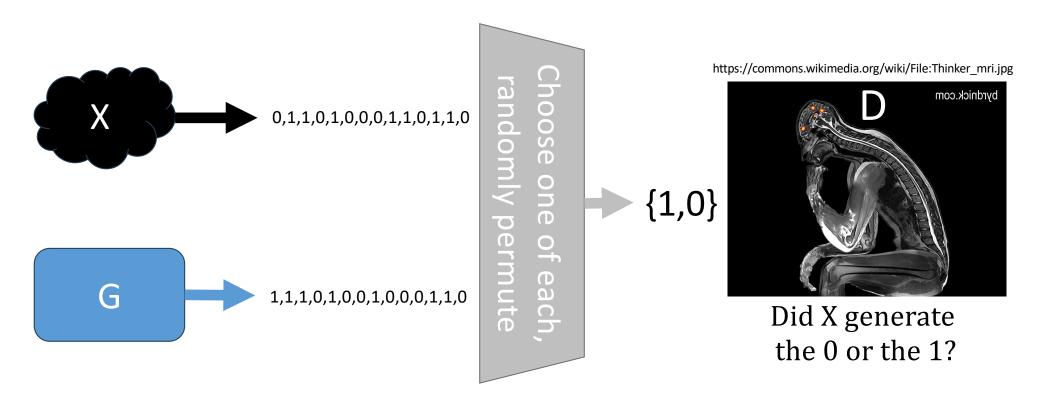
- A generative adversarial network is composed of two networks, a generator (G) and a discriminator (D)
- The generator is trained so that  $P(G = x) \approx P(X = x)$ , where X is some type of data in the real world
- The discriminator tries to tell the difference between G and X
- If the discriminator can tell the difference, then the discriminator wins
- If the discriminator can't tell the difference, then the generator wins



https://commons.wikimedia.org/wiki/File:Generative adversarial network.svg

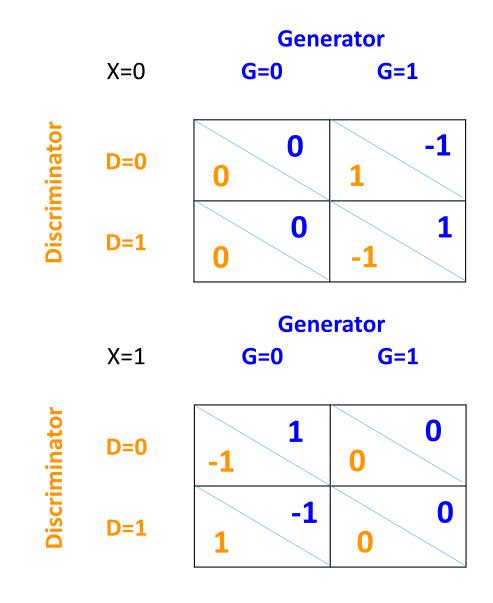
# GAN as a game

- X is a random bit
- G must generate one bit without seeing X
- D gets to see X and G, and needs to decide which one is X



### GAN as a game

- If X and G are the same, all rewards are zero.
- If X and G differ, and D can tell which one is X, then D gets rewarded, G gets penalized.
- If X and G differ, and D is incorrect, then D gets penalized, and G gets rewarded.



# Outcome probabilities

Suppose, independent of one another,

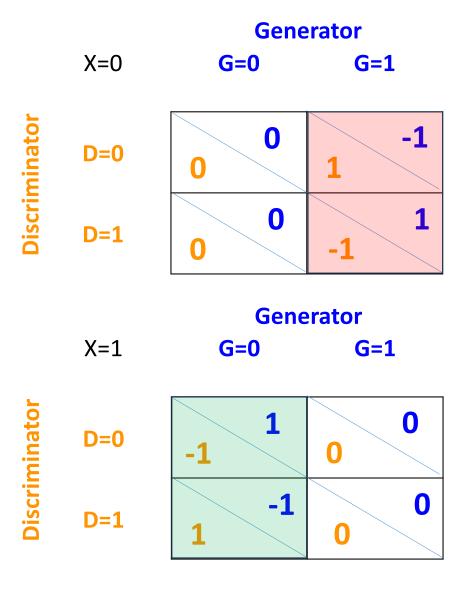
- X = 1 with probability  $P_X$
- G = 1 with probability  $P_G$

The rewards are all based on the difference between the probabilities of these two rectangles:

$$P(X = 0, G = 1) - P(X = 1, G = 0)$$

$$= P_G(1 - P_X) - P_X(1 - P_G)$$

$$= P_G - P_X$$



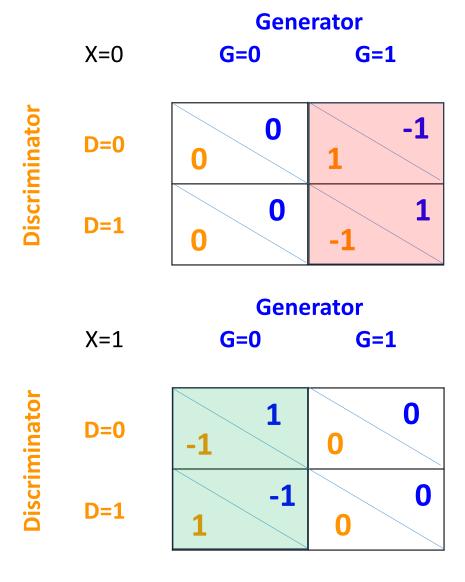
# Expected rewards

If the discriminator chooses to say that D=0 is the truth, the expected rewards are

$$E[r_D(X, G, \mathbf{0})] = P_G - P_X$$
  
$$E[r_G(X, G, \mathbf{0})] = -(P_G - P_X)$$

If the discriminator chooses to say that D=1 is the truth, the expected rewards are

$$E[\mathbf{r}_{D}(X, G, \mathbf{1})] = P_{X} - P_{G}$$
  
$$E[\mathbf{r}_{G}(X, G, \mathbf{1})] = -(P_{X} - P_{G})$$



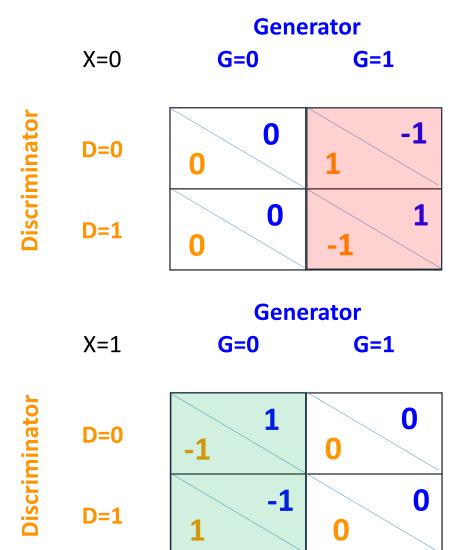
#### Rational behavior

The <u>discriminator</u> should maximize its expected reward, so it should always choose:

- Always choose D = 0 if  $P_G > P_X$
- Always choose D = 1 if  $P_G < P_X$
- Choose with 50/50 probability if  $P_G = P_X$

The **generator** should maximize its expected reward, so it should choose:

- Always generate G = 0 if P(D = 0) > 0.5
- Always generate G = 1 if P(D = 1) > 0.5
- Generate with exactly  $P_G = P_X$  if P(D = 1) = 0.5

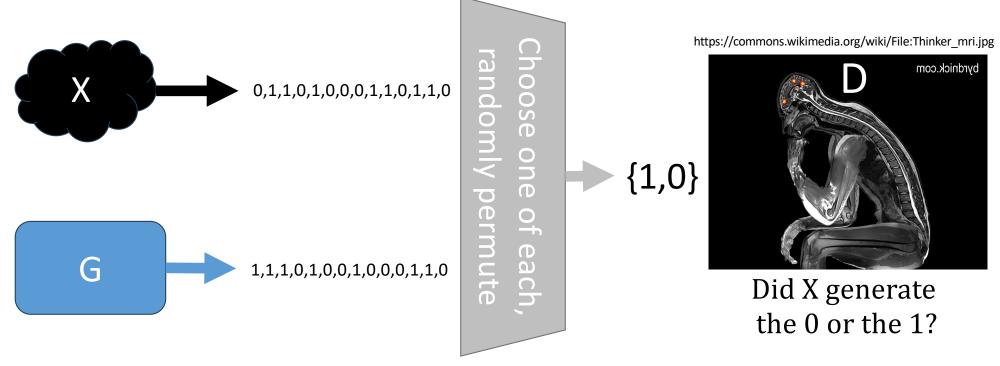


Nash equilibrium: Given the other player's behavior, neither player has a reason to change their strategy.

• The generator tries to match the data distribution as exactly as possible

• The discriminator has no choice but to choose uniformly at random, since it doesn't know

which is which



# GAN: Unstable Nash equilibrium

- Notice that gains for the GAN are asymmetric:
  - Whenever the generator wins, the discriminator loses
  - Whenever the discriminator wins, the generator loses
- For this reason, the equilibrium is unstable, just like the paparazzi game! --- GANs can be very hard to train
- Some possibilities:
  - Force the players to alternate their updates so it becomes a minimax game like chess or go (this makes convergence weird, but methods exist)
  - Add extra terms to the loss functions to help convergence (one method, called "symplectic loss," is modeled after the dynamics of a decaying satellite orbit)

#### Outline

- Stability of a Nash equilibrium
- The Paparazzi game: Games with no stable equilibria
- Generative adversarial network
- Mechanism design: encourage desirable behavior
- Mechanism design: gather information

# Mechanism design

- Using game theory, we can predict how rational agents will behave
- Suppose we want them to behave in a particular way
- Can we change the rules of the game to get the desired behavior?

# Example: Mixed equilibrium

- Suppose we want to Alice and Bob to choose actions with action probabilities given by the vectors  $p_A$ ,  $p_B$ .
- Suppose the reward matrices are initialized to

$$m{Q}_A = \begin{bmatrix} q_{A00} & q_{A01} \\ q_{A10} & q_{A11} \end{bmatrix}$$
 ,  $m{Q}_B = \begin{bmatrix} q_{B00} & q_{B01} \\ q_{B10} & q_{B11} \end{bmatrix}$ 

- Suppose we want to change  $Q_A$ ,  $Q_B$  to some new set of reward matrices  $R_A$ ,  $R_B$  so that  $(p_A, p_B)$  is a Nash equilibrium.
- What is the smallest modification that will make  $(p_A, p_B)$  a Nash equilibrium?

Bob

Defect Cooperate

Defect

Cooperate

| $q_{B00}$ | $q_{B01}$ |
|-----------|-----------|
| $q_{A00}$ | $q_{A01}$ |
| $q_{B10}$ | $q_{B10}$ |
| $q_{A10}$ | $q_{A11}$ |

### How do we know if it's equilibrium?

**Bob Defect** Cooperate

•  $(p_A, p_B)$  is a Nash equilibrium if

$$\boldsymbol{p}_{A}^{T}\boldsymbol{R}_{B}\begin{bmatrix} -1\\1 \end{bmatrix} = 0$$
$$[-1,1]\boldsymbol{R}_{A}\boldsymbol{p}_{B} = 0$$

- We want to choose  $R_A$ ,  $R_B$  that are close to  $\boldsymbol{Q}_A$ ,  $\boldsymbol{Q}_B$ , but that make those equations true.
- How can we do that?

| Defect    |              | 20           |
|-----------|--------------|--------------|
|           | <b>'</b> A00 | <b>'</b> A01 |
| Cooperate | $r_{B10}$    | $r_{B10}$    |
|           | AIU          | - All        |

# Solution using gradient descent

One way we can solve this problem is by starting with  $\mathbf{R}_A = \mathbf{Q}_A$ ,  $\mathbf{R}_B = \mathbf{Q}_B$ , and then gradually improving the fit to the desired Nash equilibrium. Define the loss to be:

$$\mathcal{L} = \frac{1}{2} \left( \boldsymbol{p}_A^T \boldsymbol{R}_B \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right)^2 + \frac{1}{2} \left( [-1,1] \boldsymbol{R}_A \boldsymbol{p}_B \right)^2$$

Learn  $R_A$  and  $R_B$  using gradient descent with some step size  $\eta$ :

$$\mathbf{R}_{A} \leftarrow \mathbf{R}_{A} - \eta \frac{\partial \mathcal{L}}{\partial \mathbf{R}_{A}}$$
$$\mathbf{R}_{B} \leftarrow \mathbf{R}_{B} - \eta \frac{\partial \mathcal{L}}{\partial \mathbf{R}_{B}}$$

... until we reach  $\mathcal{L} = 0$ .

# Other types of mechanism design

- The "prisoner's dilemma" was designed by the police so that "always defect" is the dominant strategy for both players. Can we design, instead, a strategy so that "always cooperate" is the dominant strategy?
- In the game of chicken, the mixed Nash equilibrium has a positive expected reward for both players, but is hard to achieve in practice, because it is unstable. Can we  $R_A$  and  $R_B$  to make the mixed equilibrium stable?

#### Outline

- Stability of a Nash equilibrium
- The Paparazzi game: Games with no stable equilibria
- Generative adversarial network
- Mechanism design: encourage desirable behavior
- Mechanism design: gather information

## The auction game

- The object being auctioned is worth  $v_i$  to the  $i^{\mathrm{th}}$  player
- The  $i^{ ext{th}}$  player offers to pay  $b_i$  for the item ("bid")
- If the  $i^{\rm th}$  player's bid is accepted, they can make an amount of money equal to  $r_i({\rm win}) = v_i b_i$
- If not, the amount of money they make is  $r_i(lose) = 0$



https://commons.wikimedia.org/wiki/File:Microcosm\_of\_London\_Plate\_006\_-\_Auction\_Room,\_Christie%27s\_(colour).jpg

# Nash equilibrium of a classic auction

Suppose there are only two players. Player 1's expected reward is

$$E[r_1] = P(b_1 > b_0)r_1(\text{win}) + P(b_1 \le b_0)r_1(\text{lose})$$
  
=  $P(b_1 > b_0)(v_1 - b_1)$ 

The rational bid is

$$b_1^* = \underset{b_1}{\operatorname{argmax}} P(b_1 > b_0)(v_1 - b_1)$$

...which depends on the probability distribution  $P(b_0)$ , but is always  $b_1^* < v_1$ .

Recurring auction: Knowledge is worth more than money

- Some resources (oil, advertising)
   are sold by the same organization
   once per day (or once per minute)
- The auctioneer wants to know how much the resource is worth
- ...and is willing to sacrifice a little revenue to find out



https://commons.wikimedia.org/wiki/File:The\_Ladies%27\_home\_journal\_(1948)\_(14785694143).jpg

# Vickrey auction (second-price auction)

• Player 1 wins the auction if  $b_1 > b_0$ , but only pays the auctioneer  $b_0$  dollars, not  $b_1$ . Their expected reward is therefore

$$E[r_1] = P(b_1 > b_0)r_A(\text{win}) + P(b_1 \le b_0)r_1(\text{lose})$$
  
=  $P(b_1 > b_0)(v_1 - b_0)$ 

Their rational bid is

$$b_1^* = \underset{b_1}{\operatorname{argmax}} P(b_1 > b_0)(v_1 - b_0)$$

...which should be larger than  $b_0$  whenever  $v_1 > b_0$ , but smaller than  $b_0$  whenever  $v_1 < b_0$ . In other words,

$$b_1^* = v_1$$

• Auctioneer learns each player's true valuation of the resource.

# Summary

Simultaneous gradient ascent:

$$\begin{bmatrix} z_A \\ z_B \end{bmatrix} \leftarrow \begin{bmatrix} z_A \\ z_B \end{bmatrix} + \eta \begin{bmatrix} \frac{\partial E[r_A]}{\partial z_A} \\ \frac{\partial E[r_B]}{\partial z_B} \end{bmatrix}$$

- Nash equilibrium:  $\frac{\partial E[r_A]}{\partial z_A} = \frac{\partial E[r_B]}{\partial z_B} = 0$
- Every game has a Nash equilibrium, but not every game has a stable Nash equilibrium!
- ullet Mechanism design: Adjust  $oldsymbol{R}_A$  and  $oldsymbol{R}_B$  to get desired player behavior