
Model-Free
Reinforcement

Learning

CS440/ECE448
Lecture 33

Mark Hasegawa-Johnson, 4/2024
This slides are in the public domain

Image: Megajuice, CC0,
https://commons.wikimedia.org/

w/index.php?curid=57895741

https://commons.wikimedia.org/

What should reinforcement learning learn?

Last time:
• Model-based learning: 𝑃(𝑠’|𝑠, 𝑎)
Today:
• Q-learning: 𝑞(𝑠, 𝑎), the quality of action a in state s
• Policy gradient: estimate a stochastic policy 𝜋! 𝑠 =
𝑃𝑟 𝐴" = 𝑎|𝑆" = 𝑠 ; learn it by maximizing expected total
return

The Quality of an Action

Q-learning splits Bellman’s equation into two parts:

𝑢 𝑠 = 𝑟 𝑠 + 𝛾max
!∈𝒜

5
%&

𝑃 𝑠& 𝑠, 𝑎 𝑢(𝑠&)

…becomes…

𝑞 𝑠, 𝑎 = 𝑟 𝑠 + 𝛾5
%&

𝑃 𝑠& 𝑠, 𝑎 𝑢(𝑠&)

𝑢(𝑠) = max
!∈𝒜

𝑞(𝑠, 𝑎)

Example: Gridworld

𝑟(𝑠) = &
+1 𝑠 = (4,3)
−1 𝑠 = (4,2)

−0.04 otherwise

𝑃 𝑠! 𝑠, 𝑎 = &
0.8 intended
0.1 fall	left
0.1 fall	right

𝛾 = 1

Gridworld: Utility of each state

0.81 0.87 0.92

0.76 0.66

0.71 0.66 0.61 0.39

(Calculated using value iteration.)

𝑢 𝑠 = 𝑟 𝑠 + 𝛾max
!∈𝒜

*
$%

𝑃 𝑠% 𝑠, 𝑎 𝑢(𝑠%)

Gridworld: The Q-function

Calculated using a two-step value
iteration:

𝑞 𝑠, 𝑎 = 𝑟 𝑠 + 𝛾*
$%

𝑃 𝑠% 𝑠, 𝑎 𝑢(𝑠%)

𝑢(𝑠) = max
!∈𝒜

𝑞(𝑠, 𝑎)

0.78
0.77 0.81

0.74

0.83
0.78 0.87

0.83

0.88
0.81 0.92

0.68
0.66

0.64 -.69

0.42
-0.74

0.39 0.21

0.37

0.59
0.61 0.40

0.55

0.62
0.66 0.58

0.62

0.71
0.67 0.63

0.66

0.76
0.72 0.72

0.68

Gridworld: Relationship between Q and U

0.78
0.77 0.81

0.74

0.83
0.78 0.87

0.83

0.88
0.81 0.92

0.68
0.66

0.64 -.69

0.42
-0.74

0.39 0.21

0.37

0.59
0.61 0.40

0.55

0.62
0.66 0.58

0.62

0.71
0.67 0.63

0.66

0.76
0.72 0.72

0.68

0.81 0.87 0.92

0.76 0.66

0.71 0.66 0.61 0.39

𝑢(𝑠) = max
!∈𝒜

𝑞(𝑠, 𝑎)

Q-learning

• In the reinforcement learning scenario, we don’t know
𝑃(𝑠’|𝑠, 𝑎). We just want to play the game, and observe
our earned reward, and from it, estimate 𝑞(𝑠, 𝑎).

• On the 𝑡"' iteration of q-learning, suppose that we have
an estimate 𝑞"(𝑠, 𝑎). We can use that as follows:

Try action 𝑎" in state 𝑠". Measure the reward 𝑟", and
observe the estimated utility of the state we end up
in	𝑢"(𝑠"()).

Example: Gridworld Suppose we start out with
𝒒𝟏 𝒔, 𝒂 = 𝟎 for all states and

actions.

Robot starts out in state 𝑠!=(3,1).
Robot receives a reward of 𝑟!=−0.04.
Robot tries to move UP, ends up in

𝑠!"# = (4,1).

Now we update 𝑞$%&'$ (3,1), UP :

𝑞$%&'$ (3,1), UP = 𝑟 (3,1) + 𝛾𝑢! 4,1
= −0.04 + 0 = −0.04

0
0 0

0

0
0 0

0

0
0 0

0
0

0 0

0
0

0 0

0

0
0 0

0

0
0 0

0

0
0 0

0

0
0 0

0

q-local, the short-time estimate

𝑞 𝑠, 𝑎 = 𝑟 𝑠 + 𝛾5
%&

𝑃 𝑠& 𝑠, 𝑎 𝑢(𝑠′)

𝑞*+,!*(𝑠" , 𝑎") = 𝑟" + 𝛾𝑢"(𝑠"())

Q-local approximates the true quality of an action as:
• Instead of summing over 𝑃(𝑠’|𝑠, 𝑎), just set 𝑠& = 𝑠"(),

i.e., whatever state followed 𝑠".
• Instead of the true value of 𝑢(𝑠), use our current

estimate, 𝑢" 𝑠, 𝑎 = max
!

𝑞"(𝑠, 𝑎).

TD learning

𝑞*+,!*(𝑠" , 𝑎") = 𝑟" + 𝛾𝑢"(𝑠"())

Problem: NOISY!
• 𝑠"() is random, and
• 𝑢"(𝑠"()) is not the real value of q, only our current

estimate, therefore
• 𝑞*+,!*(𝑠" , 𝑎") might be very far away from 𝑞 𝑠, 𝑎 !

TD learning

Solutions:
1. If we’re measuring using a table: interpolate, using a small

learning rate 𝜂 that’s 0 < 𝜂 < 1:
𝑞"() 𝑠", 𝑎" = 𝑞" 𝑠", 𝑎" + 𝜂 𝑞*+,!* 𝑠", 𝑎" − 𝑞" 𝑠", 𝑎"

2. If we’re measuring using a neural net, with parameters 𝜃:
use just one gradient update step, so that 𝜃 becomes the
average over many successive gradient steps:

𝜃"() = 𝜃" − 𝜂
𝜕
𝜕𝜃
1
2
𝑞" 𝑠", 𝑎" − 𝑞*+,!* 𝑠", 𝑎"

-

TD learning

𝑞*+,!* 𝑠" , 𝑎" − 𝑞" 𝑠" , 𝑎" is called the “time difference” or
TD.

1. If the TD is positive, it means action	𝑎" was better
than we expected, so 𝑞"() 𝑠" , 𝑎" = 𝑞" 𝑠" , 𝑎" + 𝜂𝑇𝐷 is
an increase.

2. If the TD is negative, it means action 𝑎" was worse
than we expected, so 𝑞"() 𝑠" , 𝑎" = 𝑞" 𝑠" , 𝑎" + 𝜂𝑇𝐷 is
a decrease.

TD learning
Putting it all together, here’s the whole TD learning algorithm:

1. When you reach state s, use your current exploration versus exploitation
policy to choose some action.

2. Observe the state 𝑠!"# that you end up in, and the reward you receive,
and then calculate q-local:

𝑞$%&'$ 𝑠! , 𝑎! = 𝑟! + 𝛾 max'(∈𝒜
𝑞!(𝑠!"#, 𝑎′)

3. Calculate the time difference, and update:
𝑞!"# 𝑠! , 𝑎! = 𝑞! 𝑠! , 𝑎! + 𝜂 𝑞$%&'$ 𝑠! , 𝑎! − 𝑞! 𝑠! , 𝑎!

or:

𝜃!"# = 𝜃! − 𝜂
𝜕
𝜕𝜃

1
2
𝑞! 𝑠! , 𝑎! − 𝑞$%&'$ 𝑠! , 𝑎!

+

TD learning is an off-policy learning
algorithm

• TD learning is called an off-policy learning algorithm
because it assumes an action

argmax
!&∈𝒜

𝑞"(𝑠"(), 𝑎′)

…which is different from the action dictated by your
current exploration versus exploitation policy.
• Sometimes off-policy learning doesn’t converge, for

example, because the TD-learning update is not taking
advantage of your exploration.

On-policy learning: SARSA
We can create an “on-policy learning” algorithm by deciding in advance
which action (𝑎!"#) we’ll perform in state 𝑠!"#, and then using that action in
the update equation:
1. Assume that you’re currently in state 𝑠!, and you’ve already chosen

action 𝑎!.
2. Observe the state 𝑠!"# that you end up in, and then use your current

exploration vs. exploitation policy to already choose 𝑎!"#!
3. Calculate q-local and the update equation as:

𝑞$%&'$ 𝑠! , 𝑎! = 𝑟! + 𝛾𝑞!(𝑠!"#, 𝑎!"#)
𝑞!"# 𝑠! , 𝑎! = 𝑞! 𝑠! , 𝑎! + 𝜂 𝑞$%&'$ 𝑠! , 𝑎! − 𝑞! 𝑠! , 𝑎!

On-policy learning: SARSA

This algorithm is called SARSA (state-action-reward-
state-action) because:
• In order to compute the TD-learning version of 𝑞*+,!*,

you only need to know the tuple (𝑠" , 𝑎" , 𝑟" , 𝑠"()):
𝑞*+,!* 𝑠" , 𝑎" = 𝑟" + 𝛾 max!&∈𝒜

𝑞"(𝑠"(), 𝑎′)

• In order to compute the SARSA version of 𝑞*+,!*, you
need to have already picked out (𝑠" , 𝑎" , 𝑟" , 𝑠"(), 𝑎"()):

𝑞*+,!* 𝑠" , 𝑎" = 𝑟" + 𝛾𝑞"(𝑠"(), 𝑎"())

Quiz

Try the quiz!
https://us.prairielearn.com/pl/course_instance/147925/asse
ssment/2417564

https://us.prairielearn.com/pl/course_instance/147925/assessment/2417564
https://us.prairielearn.com/pl/course_instance/147925/assessment/2417564

What should reinforcement learning learn?

Last time:
• Model-based learning: 𝑃(𝑠’|𝑠, 𝑎)
Today:
• Q-learning: 𝑞(𝑠, 𝑎), the quality of action a in state s
• Policy gradient: estimate a stochastic policy 𝜋! 𝑠 =
𝑃𝑟 𝐴" = 𝑎|𝑆" = 𝑠 ; learn it by maximizing expected total
return

Stochastic Policy

• Until now, we’ve mostly used deterministic policies,
𝜋 𝑠" = 𝑎"

• Now we need to a random policy. Say that the agent
chooses action 𝑎 with probability 𝜋! 𝑠 , thus

𝝅 𝑠 =
𝜋) 𝑠
⋮

𝜋 𝒜 𝑠
=

𝑃 𝐴" = 1|𝑆" = 𝑠
⋮

𝑃 𝐴" = 𝒜 |𝑆" = 𝑠

Stochastic Policy

𝝅 𝑠 =
𝜋) 𝑠
⋮

𝜋 𝒜 𝑠
=

𝑃 𝐴" = 1|𝑆" = 𝑠
⋮

𝑃 𝐴" = 𝒜 |𝑆" = 𝑠
• Notice this automatically includes a kind of epsilon-greedy

exploration, as long as 𝜋! 𝑠" > 0 for every action
• Usually we calculate 𝜋! 𝑠 as the softmax output of a

neural network
• … but how do we train the neural network?

Utility = Expected discounted sum of all
future rewards

• The policy 𝜋! 𝑠 chooses an action at random, then the unknown
transition probabilities 𝑃(𝑠%|𝑠, 𝑎)	choose a new state at random,
and so on… call this sequence the “trajectory,” 𝜏 =
𝑎' , 𝑠'(), 𝑎'(), 𝑠'(*, 𝑎'(*, … .

• The utility 𝑢 𝑠' is the expected discounted sum of future rewards:

𝑢 𝑠' = 𝐸 𝑣 𝜏 =*
+

𝑃(Τ = 𝜏)𝑣 𝜏 	

…where 𝑣 𝜏 = 𝑟 𝑠' + 𝛾𝑟 𝑠'() + 𝛾*𝑟 𝑠'(* +⋯ is the discounted
sum of future rewards corresponding to a particular trajectory 𝜏.

Maximum-utility policy
Suppose 𝜋! 𝑠 is a neural net with trainable parameters 𝜃. We’d
like to learn 𝜃 to maximize utility. Can we do that? Notice that 𝑣 𝜏
doesn’t depend directly on the probabilities, only the probability 𝑃(𝜏)
does:

𝜃 ← 𝜃 + 𝜂
𝜕𝑢 𝑠'
𝜕𝜃

= 𝜃 + 𝜂*
+

𝜕𝑃(𝜏)
𝜕𝜃

𝑣 𝜏 	

Unfortunately, 𝑃 𝜏 is not so easy to differentiate:

𝑃 𝜏 = 𝜋!! 𝑠' 𝑃 𝑠'()|𝑠' , 𝑎' 𝜋!!"# 𝑠'() 𝑃 𝑠'(*|𝑠'(), 𝑎'() ⋯

Log probabilities are easier to differentiate
than probabilities

Life would be much better if we were differentiating ln 𝑃 𝜏 :

ln 𝑃 𝜏 = ln 𝜋!! 𝑠' + ln 𝑃 𝑠'()|𝑠' , 𝑎' + ln 𝜋!!"# 𝑠'() +⋯

Then the solution would be:

𝜕 ln 𝑃 𝜏
𝜕𝜃

=
𝜕 ln 𝜋!! 𝑠'

𝜕𝜃
+ 0 +

𝜕 ln 𝜋!!"# 𝑠'()
𝜕𝜃

+ 0 + ⋯

…and if 𝜋! 𝑠 is a softmax, then ln 𝜋! 𝑠 is easy to differentiate.

The derivative of a logarithm

If we need to calculate 𝜃 ← 𝜃 + 𝜂 ∑+
,-(+)
,0

𝑣 𝜏 	, but we only know

how to calculate , 12 - +
,0

, what can we do?

Here’s the trick. Remember that:
𝜕 ln 𝑃 𝜏
𝜕𝜃

=
1

𝑃 𝜏
𝜕𝑃(𝜏)
𝜕𝜃

Therefore…
𝜕𝑢 𝑠'
𝜕𝜃

=*
+

𝜕𝑃(𝜏)
𝜕𝜃

𝑣 𝜏 	 = *
+

𝑃 𝜏
𝜕 ln 𝑃 𝜏
𝜕𝜃

𝑣 𝜏 	 = 𝐸
𝜕 ln 𝑃 𝜏
𝜕𝜃

𝑣 𝜏

The policy gradient algorithm
1. Play the game k times, and store k different trajectories, 𝜏, =

𝑎,,! , 𝑠,,!"#, 𝑎,,!"#, 𝑠,,!"+, 𝑎,,!"+, …
2. Approximate the expected loss by its average over the minibatch:

ℒ = −
1
𝑘
@
,.#

/

𝑣 𝜏, ln 𝑃 𝜏, ≈ −𝐸 𝑣 𝜏 ln 𝑃 𝜏

3. Backpropagate to maximize utility:

𝜃 ← 𝜃 − 𝜂
𝜕ℒ
𝜕𝜃

≈ 𝜃 + 𝜂
𝜕𝑢 𝑠!
𝜕𝜃

Summary: Model-free RL
• Q-learning:
𝑞$%&'$ 𝑠! , 𝑎! = 𝑟! + 𝛾 max'!∈𝒜

𝑞! 𝑠!"#, 𝑎(or 𝑞$%&'$(𝑠! , 𝑎!) = 𝑟! + 𝛾𝑞!(𝑠!"#, 𝑎!"#)

then
𝑞!"# 𝑠! , 𝑎! = 𝑞! 𝑠! , 𝑎! + 𝜂 𝑞$%&'$ 𝑠! , 𝑎! − 𝑞! 𝑠! , 𝑎!

or

𝜃!"# = 𝜃! − 𝜂
𝜕
𝜕𝜃

1
2
𝑞! 𝑠! , 𝑎! − 𝑞$%&'$ 𝑠! , 𝑎!

+

• Policy gradient:

𝜕𝑢 𝑠!
𝜕𝜃

=@
0

𝜕𝑃(𝜏)
𝜕𝜃

𝑣 𝜏 	 =@
0

𝑃 𝜏
𝜕 ln 𝑃 𝜏
𝜕𝜃

𝑣 𝜏 	 = 𝐸
𝜕 ln 𝑃 𝜏
𝜕𝜃

𝑣 𝜏

