Model-Free E_EF'I‘-“l
Reinforcement e m{“

Learning Environment

CS440/ECE448 sta,d
Lecture 33 Interpreter

Mark Hasegawa-Johnson, 4/2024 Q_’ \ ,i\ J
This slides are in the public domain -

e

Image: Megaijuice, CCO,
https://commons.wikimedia.org/

w/index.php?curid=57895741 Ag e n t

Action

https://commons.wikimedia.org/

What should reinforcement learning learn?

Last time:

* Model-based learning: P(s’|s, a)

Today:

* Q-learning: q(s, a), the quality of action a in state s

 Policy gradient: estimate a stochastic policy m,(s) =
Pr(A, = a|S; = s); learn it by maximizing expected total
return

The Quality of an Action

Q-learning splits Bellman’s equation into two parts:
u(s) =r(s) + yl(‘lnezﬁz: P(s'|s,a)u(s")
...becomes... K
q(s,a) =r(s) +)/z P(s'|s,a)u(s")
St

u(s) = maxq(s, a)

+1 s = (4,3)
r(s) =4 -1 s = (4,2)

—0.04 otherwise

0.8 intended
P(s'|s,a) =<0.1 fallleft

0.1 fall right

Example: Gridworld
6577

H <

cr‘x‘j y=1

Gridworld: Utility of each state

u(s) =r(s)+y glezgz: P(s'|s,a)u(s")

0.81

0.71

0.87

0.66

0.92

|2

0.61

0.39

(Calculated using value iteration.)

Gridworld: The Q-function

0.78
0.77 0.81

0.74

0.76
0.72 0.72

0.68

0.71

0.83
0.78 0.87

0.83

0.62

0.67 0.63 0.66 0.58

0.66

0.62

0.88
0.81 0.92

0.68

0.66
0.64 -.69

0.42

0.59
0.61 0.40

0.55

-0.74
0.39 0.21

0.37

Calculated using a two-step value
iteration:

a(s,@) =7(5) +v) P(s'ls, u(s")

u(s) = maxq(s,a)

Gridworld: Relationship between Q and U

u(s) = maxq(s,a)

aeA
0.78 0.83 0.88
0.77 081 0.78 0.87|0.81 0.92 O 81 O 87 O 92
0.74 0.83 0.68
0.76 0.66
0.72 0.72 0.64 -.69 & O 76 O 66 ‘
0.68 0.42
0.71 0.62 0.59 -0.74
0.67 063 0.66 058 |0.61 040|039 0.21 O 71 O 66 O 61 O 39
0.66 0.62 0.55 0.37

Q-learning

* In the reinforcement learning scenario, we don’t know
P(s’|s,a). We just want to play the game, and observe
our earned reward, and from it, estimate g(s, a).

 On the t'" iteration of g-learning, suppose that we have
an estimate g;(s,a). We can use that as follows:

Try action a; in state s,. Measure the reward r;, and
observe the estimated utility of the state we end up

IN Uy (Set1)-

Example: Gridworld

0 0 0
0 0 00 0
0 0
0
0
0
0 0
00 0
0 0

Suppose we start out with
q4(s,a) = 0 for all states and
actions.

Robot starts out in state s,=(3,1).
Robot receives a reward of r.=—0.04.

Robot tries to move UP, ends up in
Se+1 = (4,1).

Now we update q;,.4;((3,1), UP):

Q10car((3,1), UP) = r((3,1)) + yu,((4,1))
= —0.04+0=-0.04

g-local, the short-time estimate

q(s,a) =r(s) + yz P(s'|s,a)u(s")
S/
Qrocal(St, Ar) = 1t + YU(St41)

Q-local approximates the true quality of an action as:

 Instead of summing over P(s’|s,a), just set s’ = s;.,
l.e., whatever state followed s;.

* Instead of the true value of u(s), use our current
estimate, u;(s,a) = max q;(s, a).
a

TD learning
Qrocai(St, ar) = 1t + Yur(Se41)

Problem: NOISY!
e 5,1 ISrandom, and

e u,(s;4+1) Is not the real value of q, only our current
estimate, therefore

* q10ca1(St, a;) might be very far away from g(s, a)!

TD learning

Solutions:

1. If we're measuring using a table: interpolate, using a small
learning rate n that's 0 < n < 1:

Ge+1(Se, ar) = qe(Sg, ap) + n(qwcal(st; ar) — qe(se Clt))

2. If we’re measuring using a neural net, with parameters 6:
use just one gradient update step, so that 8 becomes the

average over many successive gradient steps:
01

2
Ory1 = 0r — U%E (Qt(st; ar) — Qrocai(Se, at))

TD learning

T1ocai(Se, ap) — q. (s, a,) is called the “time difference” or
TD.

1. If the TD is positive, it means action a, was better
than we expected, so q;.,(s¢, a;) = q.(s;, a;) +nTD is
an increase.

2. If the TD is negative, it means action a; was worse
than we expected, so q;.1(s¢, a;) = q:(s¢, a.) + nTD is
a decrease.

TD learning

Putting it all together, here’s the whole TD learning algorithm:

1.

When you reach state s, use your current exploration versus exploitation
policy to choose some action.

Observe the state s;,; that you end up in, and the reward you receive,
and then calculate g-local:
Qiocai(St, Ar) = 1¢ +y max q;(Sg4q,a’)
a’reA
Calculate the time difference, and update:
Ge+1(St ar) = qe(se, ar) + 0(qrocar (s, ae) — qe(se, ar))
or:

d 1

2
Ory1 = 0¢ — U%E (Qt(st' ar) = Grocai(St, at))

TD learning is an off-policy learning
algorithm

« TD learning is called an off-policy learning algorithm
because it assumes an action

!/
argmax q¢(S¢4+1, Q)
ar’eA

...which is different from the action dictated by your
current exploration versus exploitation policy.

« Sometimes off-policy learning doesn’t converge, for
example, because the TD-learning update is not taking
advantage of your exploration.

On-policy learning: SARSA

We can create an “on-policy learning” algorithm by deciding in advance
which action (a;.,.,) we’'ll perform in state s;,;, and then using that action in
the update equation:

1. Assume that you're currently in state s;, and you’ve already chosen
action a;.

2. Observe the state s;,; that you end up in, and then use your current
exploration vs. exploitation policy to already choose a;. 1!

3. Calculate g-local and the update equation as:

Qiocai(St, a¢) = 1¢ + ¥qe(Set1, A1)
Ge+1(Se,ar) = qe(Se, ae) + ﬂ(Qlocal(St» a:) — q¢(se, at))

On-policy learning: SARSA

This algorithm is called SARSA (state-action-reward-
state-action) because:

* In order to compute the TD-learning version of q;,.4;,
you only need to know the tuple (s¢, a;, 11, S¢41):

qwcal(st» at) =Tt +Yy gr}éiﬁ dt (St+1r a’)
* In order to compute the SARSA version of q;,cq:, YOU
need to have already picked out (s¢, as, 74, S¢+1, Ar11):
qwcal(st» at) =T + VQt(St+1» at+1)

Quiz

Try the quiz!

https://us.prairielearn.com/pl/course instance/147925/asse
ssment/2417564

https://us.prairielearn.com/pl/course_instance/147925/assessment/2417564
https://us.prairielearn.com/pl/course_instance/147925/assessment/2417564

What should reinforcement learning learn?

 Policy gradient: estimate a stochastic policy m,(s) =
Pr(A, = a|S; = s); learn it by maximizing expected total
return

Stochastic Policy

* Until now, we've mostly used deterministic policies,
m(sy) = a;

 Now we need to a random policy. Say that the agent
chooses action a with probability 7, (s), thus

-1, (5) " P(A; =1]S; =s)]

t(s) = : = :

7T|aq|(5)

P(A; = |A]|S; = s).

Stochastic Policy

() | [PUA=1Se =)

T(s) = : = :

()| P4 = 14llS, =).

* Notice this automatically includes a kind of epsilon-greedy
exploration, as long as n,(s;) > 0 for every action

« Usually we calculate ,(s) as the softmax output of a
neural network

e ... but how do we train the neural network?

Utility = Expected discounted sum of all
future rewards

* The policy m,(s) chooses an action at random, then the unknown
transition probabilities P(s’|s, a) choose a new state at random,
and so on... call this sequence the “trajectory,” T =
(At St41) Aet1s St42s Ap g2y -)

« The utility u(s;) is the expected discounted sum of future rewards:

u(s) = E[v(@] =) P(T = 1)v(®)

...where v(1) = r(s;) + yr(s;s1) + ¥2r(ses,) + -+ is the discounted
sum of future rewards corresponding to a particular trajectory .

Maximume-utility policy

Suppose m,(s) is a neural net with trainable parameters 6. We’d
like to learn 6 to maximize utility. Can we do that? Notice that v(7)
doesn’t depend directly on the probabilities, only the probability P(7)
does:

ou(s;) dP (1)
TR NET.

6«0 +n V(1)

Unfortunately, P(7) is not so easy to differentiate:

P(t) = mq, (S)P (Stsalse a)Ta,,, (Se41)P(Ste2lSerr, Qpra)

Log probabilities are easier to differentiate
than probabillities

Life would be much better if we were differentiating In P(7):

In P(T) = In T[at(St) + In P(St+1|St' at) + In T[at+1 (St+1) 4+ ...

Then the solution would be:

d1lnP(1) _ dInm,, (s¢) Lo dInmy,, (St1)

96 96 96 O+

...and if T (s) is a softmax, then Inm,(s) is easy to differentiate.

The derivative of a logarithm

aP(T)

If we need to calculate 6 < 6 +n)., v(t) , but we only know

0 1n P(7)
06

Here’s the trick. Remember that:
dInP(r) 1 0P(7)

06 P(t) 06

. what can we do?

how to calculate

Therefore...

ou(s, 9 9 1n d1n P
Us) 0P,y _Z SLLL WS [n (T)”(T)]

The policy gradient algorithm

Play the game k times, and store k different trajectories, t; =
(ai,t) Si,t+1 Qi t+1, Si,t+2) Aijt+25 -)

Approximate the expected loss by its average over the minibatch:
K

1
L=——) v(t;)InP(1;) = —E[v(t) In P(7)]
i=1
Backpropagate to maximize utility:
0L ou(s;)

9(—9—77%%9+7) PY:

Summary: Model-free RL
* Q-learning:

Qrocal(Se,as) =1 +y Crlr,lgjé qe(Se+1,a’) OF Quocai(Se,ap) =1 + ¥ qe(Se41, A1)

then
Ge+1(Se,ar) = qe(Se,ae) + U(QIocal(St» a;) — q¢(se, at))
) 31 or
Ori1 =0 — M= 96 2 (Clt(st ar) — Qiocai (St at))
* Policy gradient:
0 oP dlnP dlnP
ua(;t): (T) (D) _Z 21 (T)v() { r; (T)v(r)

