CSA440/ECE448 N —
Lecture 30: Robotics

Mark Hasegawa-Johnson, 4/2024
These slides are in the public domain

Outline

* The robot path planning problem
* Workspace vs. Configuration space
* Path planning

* Visibility graph
e Rapid Random Trees (RRT)
* Trajectory control

* Proportion-Integral-Derivative (PID) controller
* Model predictive control

What is a “Robot”?

Example: Shaky the robot, 1972
https://en.wikipedia.org/wiki/Shakey the_ robot

* Planning
* Antenna for radio link
* On-board logic
e Camera control unit

* Perceiving
* Range finder
* Television camera
* Bump detector

* Acting
e Caster wheel
* Drive motor
* Drive wheel

CASTER
WHEEL

Example: Robot Arm

Adeept robot arm for Arduino (from Amazon)

 How does the robot arm decide
when it has successfully grasped
acup?

* How does it find the shortest
path for its hand?

Configuration Space Example: Robot Arm
https://www.youtube.com/watch?v=P2r9U4wkjcc

= E3Premium robot arm Q A ﬁ

. P Pl) 001/656

How to Make Hydraulic Powered Robotic Arm from Cardboard

https://www.youtube.com/watch?v=P2r9U4wkjcc

Outline

* Workspace vs. Configuration space

* Path planning
* Visibility graph
e Rapid Random Trees (RRT)

* Trajectory control

e Time scaling
* Proportion-Integral-Derivative (PID) controller

* Model predictive control

The Robot Arm Reaching Problem

https://www.mathworks.com/help/fuzzy/modeling-inverse-kinematics-in-a-robotic-arm.html

e Qur goal is to reach a
particular location (x,y) (x,y) Desired location

e But we can’t control (x,y)
directly! What we actually
control is (64, 6,).

Workspace vs. Configuration space

* A robot’s workspace, W, is the
physical landscape in which it
operates, W c R3.

» Configuration space, C, is the set of
joint angles that govern the robot’s
shape. For example, if we have four
angles to control, then C ¢ R*:

' shoulder azimuth]

__|shoulder elevation
4= | elbow elevation

| gripper opening |

e C cR*

= D Premium robot arm Q e

o) 0:01/6:56

How to Make Hydraulic Powered Robotic Arm from Cardboard

Forward kinematics

The forward kinematics function, ¢, (q), maps (point
on robot X configuration space)—(workspace). This is
just geometry. Example:

« b = [by,b,]" = a particular point on the arm which is b
meters from the shoulder, 0 < b; < L;,0<b, <L,

*q = [91' HZ]T

,
by cos 91] b, =0
(@) = | b, sin 64
Yplq [Ll CcoS 01 + bz COS(Ql + 92)] b, =L
\ L, sin 6 + b, sin(8; + 6;) L

)\ (x.y) Desired location

Image © https://www.mathworks.com/help/fuzzy/modeling-
inverse-kinematics-in-a-robotic-arm.html

The Robot Arm Reaching Problem

Jeff Ichnowski, University of North Carolina, https://www.cs.unc.edu/~jeffi/c-space/robot.xhtml

Configuration Space Visualization of 2-D Robotic Manipulator

Workspace C-Space

© Setup — the robot’s arms, base and obstacles are fully adjustable
Simulation Mode: Configure — only the robot's configuration may be changed (arm angles)
Inverse Kinematic — click or drag the robot's end effector to position the robot.
Simulation Control:

Prof. Ron Alterovitz's Robotics courses

https://www.cs.unc.edu/~jeffi/c-space/robot.xhtml

QuIz

Try the quiz!

https://us.prairielearn.com/pl/course instance/147925/assessment/24
12878

https://us.prairielearn.com/pl/course_instance/147925/assessment/2412878
https://us.prairielearn.com/pl/course_instance/147925/assessment/2412878

Obstacles and Inverse kinematics

* Obstacles are things in the workspace, W, that we

, .
don’t want to run into. /\ (x.y) Desired location

* We want to plan a path through configuration
space, C, such that we don’t run into any obstacle.

* |In order to do that, we need inverse kinematics: a
function that converts obstacles in the workspace,
Wi, into equivalent obstacles in configuration
space, Cops.

Cobs = {q: 3b: (pb(Q) € Wobs}

* For example: we usually do this by just exhaustively
testing every point in configuration space, to see if it
runs into an obstacle.

Image © https://www.mathworks.com/help/fuzzy/modeling-
inverse-kinematics-in-a-robotic-arm.html

The Robot Arm Reaching Problem

Jeff Ichnowski, University of North Carolina, https://www.cs.unc.edu/~jeffi/c-space/robot.xhtml

Configuration Space Visualization of 2-D Robotic Manipulator

Workspace C-Space

© Setup — the robot’s arms, base and obstacles are fully adjustable
Simulation Mode: Configure — only the robot's configuration may be changed (arm angles)
Inverse Kinematic — click or drag the robot's end effector to position the robot.
Simulation Control:

Prof. Ron Alterovitz's Robotics courses

https://www.cs.unc.edu/~jeffi/c-space/robot.xhtml

Outline

* Path planning
* Visibility graph
e Rapid Random Trees (RRT)

* Trajectory control

* Time scaling
* Proportion-Integral-Derivative (PID) controller
* Model predictive control

* Model-based and model-free RL

The planning
problem

What is the best way
to get from
configuration 1 to
configuration 27?

configuration 1

a2 al

configuration 2

What is “best”?

V\t/)e need some way to define the word
o est,”

Assumption: The shortest

path in C-space is the best

way to get from config 1 to
config 2.

Implied assumption:
Longer path in C-space =
More manipulation of robot motors =

Greater energy expenditure =
Bad.

configuration 1

- Workspace

C-Space

configuration 2

Workspace

C-Space

Finding the shortest path

Here are some algorithms you know that are guaranteed to find the
shortest path:

* Dijkstra’s algorithm (BFS)
* A* search

In fact, A* search was invented as a solution to the robot path planning
problem. However, A* search is not quite well-suited to this problem,

because...

A* requires discretizing the
search space

A* assumes a discrete search space.

To apply it to the robot path-planning
problem, we first need to discretize
C-space.

We can discretize it using a
rectangular grid, but doing so
reduces the precision of our answer.

-Space

Outline

* Visibility graph

e Rapid Random Trees (RRT)
* Trajectory control

* Time scaling

* Proportion-Integral-Derivative (PID) controller
* Model predictive control

* Model-based and model-free RL

Visibility Graph C-Spece

Suppose all the obstacles are polygons in
C-space. Then the shortest path is
guaranteed to be:

* From starting point to the corner of an
obstacle, then...

e ..from that corner to another corner,
then....

e ...from the corner of an obstacle to the
goal.

Visibility Graph

The algorithm, then, is:
1. Find all the corners.

2. Find the distances between every pair
of corners.

3. Search that graph, using A*, to find
the best path.

Limitations

The limitation of a visibility graph: it only works if the obstacles are
polygons in C-space. If obstacles are arcs, they don’t have corners.

Workspa&a) C-Space

5
—§:

Outline

e Rapid Random Trees (RRT)

* Trajectory control
* Time scaling
* Proportion-Integral-Derivative (PID) controller
* Model predictive control

* Model-based and model-free RL

C-Space Best-path algorithms

* A* on a rectangular grid

e Search nodes: squares on the grid
* A* on a visibility graph

* Search nodes: obstacle corners

* A* on a graph of rapid random trees (RRT)
e Search nodes: randomly sampled points

R RT C-Space

X X
1. Generate a bunch of randomly
sampled points to serve as search
nodes X

R RT C-Spac

X X
Generate a bunch of randomly
sampled points to serve as search
nodes X

Eliminate the points that are inside
obstacles

. Perform A* over the remaining points
to find the best path

Generate more samples in the vicinity)S(
of best points

Repeat steps 2 through 4

R RT C-Spac

X X
Generate a bunch of randomly
sampled points to serve as search
nodes X

Eliminate the points that are inside
obstacles

. Perform A* over the remaining points
to find the best path

Generate more samples in the vicinity)S(
of best points

Repeat steps 2 through 4

RRT

Generate a bunch of randomly
sampled points to serve as search
nodes

Eliminate the points that are inside
obstacles

. Perform A* over the remaining points
to find the best path

Generate more samples in the vicinity
of best points

Repeat steps 2 through 4

RRT

Generate a bunch of randomly
sampled points to serve as search
nodes

Eliminate the points that are inside
obstacles

. Perform A* over the remaining points
to find the best path

Generate more samples in the vicinity
of best points

Repeat steps 2 through 4

Key benefits of RRT

* Even with very limited computation (e.g., you can only afford one
iteration), you still get a path that solves the problem

* In the limit of infinite computation (infinite # iterations), you get the
best possible continuous-space path

Outline

* Trajectory control
e Time scaling
* Proportion-Integral-Derivative (PID) controller
* Model predictive control

Trajectory control:
maximum torque

C-Space

Now that you have an optimum path,
how fast should the robot travel along
that path?

Consideration #1: maximum torque.

Find q(t) = [91(15)] so that
0, (1)
d?6 d-o,
12 < maxy, 172 < max,

@ l
E
£
3

Trajectory control:
maximum safe velocity T v

Consideration #2: maximum safe velocity.

.‘
o
B
H

Find q(t) = ngt% so that =
(dwl)2 N (dwz)2 - — K
J\dt dt) = 'max ’
..where w(t) is any solution to the puli

inverse kinematics:
w(t) € {w: Jb: <pb(q(t)) = w(t)}

o i
iy
B
8

&

iﬁ

Outline

* Proportion-Integral-Derivative (PID) controller
* Model predictive control

Trajectory control: error
management!!!

C-Space

Consideration #3: what do you do if you
start on a path but discover that your
motor is miscalibrated and you’re going
the wrong direction?

P-controller -

A proportional controller (P-controller)
adds some extra torque in proportion to
the error

dt? [ezl K(q(t) —r(t))

...

r(t)a

P-controller Problems C-Space

A P-controller tends to result in oscillating
overshoot.

PD-controller C-Space

A proportional-derivative controller (PD-
controller) adds some extra torque in
proportion to the error of the derivative:

d2
o] = Koa@® - r

+Kp (q(t) — (1))

Doing this can smooth out the trajectory,
but can leave some long-term error

PID-controller C-Space

A proportional-integral-derivative controller
(PID-controller) adds some extra torque in
proportion to the error of the integral:

- 0] Kp(a(®) = 7())

K, j (@) — r()d
Ky (@) — ()

The P term fixes short-term errors.
The | term fixes long-term errors.
The D term smooths out oscillations.

Outline

* The robot path planning problem
* Workspace vs. Configuration space

e Path planning

* Visibility graph

e Rapid Random Trees (RRT)
* Trajectory control

* Time scaling
* Proportion-Integral-Derivative (PID) controller

* Model predictive control

What if your motors
behave randomly?

C-Space

* What if your motors have some
randomness?

* Then you might not be able to plan an
exact trajectory.

* The best you can do is plan a trajectory
that goes in the right general direction.

A S

Model predictive control

. means the following strategy.

Plan an optimum trajectory

Go partway

Observe where you are
Recalculate the optimal trajectory
Repeat

C-Space

Summary

* The robot path planning problem

 Workspace (e.g., w = [x,y]7) vs. Configuration space (e.g., q =
[011 QZ]T)
* Path planning
* Visibility graph: states=vertices in configuration space
» Rapid Random Trees (RRT): states=random, resampled near the best path
after every iteration
* Trajectory control
* Time scaling: Constraints on motor torque, workspace velocity
* Proportion-Integral-Derivative (PID) controller: Smooth out oscillations
* Model predictive control: Plan for the possibility of error

