
CS 440/ECE448 Lecture 24:
Repeated Games

Mark Hasegawa-Johnson, 3/2024
These slides are in the public domain.

Public domain.  https://commons.wikimedia.org/wiki/File:Indiana_In_Early_Fight,_But_Succumbs_To_Chicago,_November_10,_1923_(cropped).jpg

https://commons.wikimedia.org/wiki/File:Indiana_In_Early_Fight,_But_Succumbs_To_Chicago,_November_10,_1923_(cropped).jpg


Outline

• Mathematical foundations
• Repeated games and the rational basis for cooperation
• Learning an episodic game
• Learning a sequential game



Review: Markov decision process

• 𝑠 ∈ 𝒮: state of the environment (could be int, real, tuple, whatever)
• 𝑟 𝑠 ∈ ℝ: reward received in state 𝑠
• 𝑢 𝑠 ∈ ℝ: utility of state s = expected discounted sum of all future rewards

• 𝑎 ∈ 𝒜: action (usually 𝒜 is a discrete finite set)
• 𝜋: 𝒮 → 𝒜: policy = best action for each state

• The optimum action is given by Bellman’s equation:

𝑢 𝑠 = 𝑟 𝑠 + 𝛾max
!
.
"#

𝑃 𝑆$%& = 𝑠′|𝑆$ = 𝑠, 𝑎 𝑢 𝑠′



Review: Expectiminimax

• In a two-player, zero-sum game, each player wins exactly as much as the other 
player loses.  

• The player trying to maximize 𝑢 𝑠 is called “Max,” the player trying to minimize 
𝑢 𝑠 is called “Min.”

• Bellman’s equation:

𝑢 𝑠 =

𝑟 𝑠 + 𝛾max
!

1
"#

𝑃 𝑆$%& = 𝑠# 𝑆$ = 𝑠, 𝑎 𝑢(𝑠#) 𝑠 is amax state

𝑟 𝑠 + 𝛾 min
!
1
"#

𝑃 𝑆$%& = 𝑠# 𝑆$ = 𝑠, 𝑎 𝑢(𝑠#) 𝑠 is amin state



Simultaneous games

• If players play simultaneously, then the best strategy might be to choose a move at 
random (e.g., game of Chicken: make sure opponent can’t predict your action with 
certainty)

• Instead of a scalar 𝜋 𝑠 =action, we can use

𝝅 𝑠 =
𝜋! 𝑠
⋮

𝜋 𝒜 𝑠
,𝝋 𝑠 =

𝜑! 𝑠
⋮

𝜑 ℬ 𝑠

• 𝜋$ 𝑠 =probability that player 1 chooses action 𝑎 in state 𝑠
• 𝜑% 𝑠 =probability that player 2 chooses action 𝑏 in state 𝑠

0 ≤ 𝜋$ 𝑠 ≤ 1,.
$&!

𝒜

𝜋$ 𝑠 = 1, 0 ≤ 𝜑% 𝑠 ≤ 1,.
%&!

ℬ

𝜑% 𝑠 = 1,



Rewards and utility for simultaneous games

• 𝑟&(𝑠, 𝑎, 𝑏) = Reward that player 1 receives in state 𝑠 if player 1 
chooses action 𝑎 and player 2 chooses action 𝑏
• 𝑟'(𝑠, 𝑎, 𝑏) = Reward that player 2 receives in state 𝑠 if player 1 

chooses action 𝑎 and player 2 chooses action 𝑏
• 𝑢&(𝑠) = Utility of state 𝑠 for player 1
• 𝑢'(𝑠) = Utility of state 𝑠 for player 2
• 𝑃(𝑠’|𝑠, 𝑎, 𝑏) = Probability of a transition to 𝑠’ from 𝑠 if player 1 

chooses action 𝑎 and player 2 chooses action 𝑏



Bellman’s equation for repeated simultaneous 
two-player games
The probability of action a is 𝜋! 𝑠 , the probability of action 𝑏 is 𝜑" 𝑠 , and the probability of a 
transition to state 𝑠’ is 𝑃 𝑠# 𝑠, 𝑎, 𝑏 , so the expected sum of all future rewards under policies 𝝅 and 
𝝋 is:

𝑢$ 𝑠 = -
!,"

𝜋! 𝑠 𝜑" 𝑠 𝑟$ 𝑠, 𝑎, 𝑏 + 𝛾-
&!
𝑃 𝑠# 𝑠, 𝑎, 𝑏 𝑢$ 𝑠#

𝑢' 𝑠 = -
!,"

𝜋! 𝑠 𝜑" 𝑠 𝑟' 𝑠, 𝑎, 𝑏 + 𝛾-
&!
𝑃 𝑠# 𝑠, 𝑎, 𝑏 𝑢' 𝑠#

The best policies, for each player, are:
𝝅 𝑠 = argmax

𝝅
𝑢$ 𝑠

𝝋 𝑠 = argmax
𝝋

𝑢' 𝑠
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Repeated games and the rational basis for cooperation

https://www.youtube.com/watch?v=BOvAbjfJ0x0&t=331s
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Learning an episodic game

Repeated games can be either episodic or sequential:
• Sequential: your actions can change the environment 𝑠, which 

changes the reward 𝑟& 𝑠, 𝑎, 𝑏 and the other player’s strategy 𝝋 𝑠
• Episodic: your actions don’t change the environment.  Your reward is 
𝑟& 𝑎, 𝑏 , your strategy is 𝝅, your opponent’s reward is 𝑟' 𝑎, 𝑏 , and 
their strategy is 𝝋.

Repeating an episodic game allows us to iteratively optimize our 
strategy vector 𝝅, using methods kind of like gradient descent.



Example: The lunch game
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• Alice and Bob have agreed that they should always meet 
at the boat club for lunch.
• Each day, each of them must decide to either:

• Cooperate: go to the boat club for lunch
• Defect: go to the museum for lunch

• If they both cooperate, they eat lunch together
• If they both defect, they eat lunch together
• If one cooperates and the other defects, they each eat 

lunch alone 
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Example: The lunch game

• Alice prefers reading to talking
• If they eat lunch together, she gets 1 happiness 

point
• If they eat lunch alone, she gets 2 happiness 

points

• Bob prefers talking to reading
• If they eat lunch together, he gets 2 happiness 

points
• If they eat lunch alone, he gets 1 happiness point
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Example: The lunch game

• Alice’s strategy is 𝝅 =
𝜋&
𝜋'

• 𝜋' =
&

&%(!"
is the probability she cooperates 

• 𝜋& = 1 − 𝜋'

• Bob’s strategy is 𝝋 =
𝜑&
𝜑'

• 𝜑' =
&

&%(!#
is the probability he cooperates 

• 𝜑& = 1 − 𝜑'

Defect Cooperate

Defect

Cooperate

1

2 1

2
12

1 2

Bob

Al
ic
e



Example: The lunch game Defect Cooperate
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• Alice’s expected reward is
𝑢& = 𝝅(𝑹𝟏𝝋 = 𝜋&, 𝜋'

1 2
2 1

𝜑&
𝜑'

• Bob’s expected reward is
𝑢' = 𝝅(𝑹𝟐𝝋 = 𝜋&, 𝜋'

2 1
1 2

𝜑&
𝜑'

• Alice’s strategy is 𝝅 =
𝜋&
𝜋'

• Bob’s strategy is 𝝋 =
𝜑&
𝜑'



The Nash Equilibrium Defect Cooperate

Defect

Cooperate

1

2 1

2
12

1 2

Bob

Al
ic
e

• Alice’s expected reward is
𝑢& = 𝝅( 1 2

2 1 𝝋

• Bob’s expected reward is
𝑢' = 𝝅( 2 1

1 2 𝝋

• The Nash equilibrium is:

𝝅 = 0.5
0.5 , 𝝋 = 0.5

0.5
…you can verify that this is a Nash equilibrium by noticing that

• If 𝝅 = 0.5
0.5 , then Bob has no preference between cooperating and defecting, so he can 

choose at random.

• If 𝝋 = 0.5
0.5 , then Alice has no preference, and can choose at random.



Simultaneous gradient ascent

𝑢! = 𝝅'𝑹𝟏𝝋, 𝑢) = 𝝅'𝑹𝟐𝝋, 𝝅 = 𝑒+,/(1 + 𝑒+,)
1/(1 + 𝑒+,) , 𝝋 = 𝑒+-/(1 + 𝑒+-)

1/(1 + 𝑒+-)
• Can we use some type of machine learning algorithm to find the ”optimum values” of 𝝅

and 𝝋, i.e., the Nash equilibrium?
• Alice chooses 𝝅 to maximize 𝑢! for any given 𝝋
• Bob chooses 𝝋 to maximize 𝑢) for any given 𝝅
• One thing we can try is “simultaneous gradient ascent:”  adjust 𝑥 and 𝑦 in order to

maximize both 𝑢! and 𝑢! simultaneously:
𝑥
𝑦 ←

𝑥
𝑦 + 𝜂

𝛁𝒙𝑢!
𝛁𝒚𝑢)

• (…where 𝛁𝒙𝑢! is general notation for the gradient of 𝑢! w.r.t. 𝑥.  In this case, since 𝑥 is a 
scalar, 𝛁𝒙𝑢! = 𝜕𝑢!/𝜕𝑥)



Try the quiz!

Try the quiz: 
https://us.prairielearn.com/pl/course_instance/147925/assessment/24
08126

https://us.prairielearn.com/pl/course_instance/147925/assessment/2408126
https://us.prairielearn.com/pl/course_instance/147925/assessment/2408126


Simultaneous gradient ascent

• Surprisingly, simultaneous 
gradient ascent fails.
• The graph at right is the 

sequence of vectors 
𝜋'
𝜑' = 1/(1 + 𝑒+,)

1/(1 + 𝑒+-)
…obtained using 

𝑥
𝑦 ←

𝑥
𝑦 + 𝜂 𝜕𝑢&/𝜕𝑥

𝜕𝑢'/𝜕𝑦



Simultaneous gradient ascent

• Why does it never converge?

• If Bob is at the boat club w/prob 𝜑' < 0.5, 
then Alice increases 𝑥 (so she can eat alone 
more often)

• If Alice is at the boat club w/prob 𝜋' > 0.5, 
then Bob increases 𝑦 (so he can eat with her 
more often)

• If Bob is at the boat club w/prob 𝜑' > 0.5, 
then Alice decreases 𝑥 (so she can eat alone 
more often)

• If Alice is at the boat club w/prob 𝜋' < 0.5, 
then Bob decreases 𝑦 (so he can eat with her 
more often)

• … and so on, forever.



Digression: orbital mechanics

• This is exactly like the orbit of a 
spaceship around a planet (the 
equations are the same)

• We can make it converge the 
same way we would make a 
spaceship’s orbit decay: apply 
friction



The symplectic correction

• The solution is to apply friction.  The friction term we apply is 
something that (Balduzzi et al., 2018) called “the symplectic
correction “ (named after orbital mechanics a.k.a. symplectic
mechanics).  It looks like this:

𝑥
𝑦 ←

𝑥
𝑦 + 𝜂 𝑰 + 𝑪 𝜕𝑢&/𝜕𝑥

𝜕𝑢'/𝜕𝑦
• The matrix 𝑪 is called the symplectic correction.  It is 𝑪 = 𝜆 𝑯( −𝑯 , 

where 𝜆 is a scalar, and 𝑯 is something called the Hessian:

𝑯 = 𝜕'𝑢&/𝜕𝑥' 𝜕'𝑢&/𝜕𝑥𝜕𝑦
𝜕'𝑢'/𝜕𝑥𝜕𝑦 𝜕'𝑢'/𝜕𝑦'



Corrected gradient ascent

• The graph at right is the sequence of 
vectors 

𝜋'
𝜑' =

1/(1 + 𝑒)*)
1/(1 + 𝑒)+)

…obtained using 
𝑥
𝑦 ←

𝑥
𝑦 + 𝜂 𝑰 + 𝑪

𝜕𝑢&/𝜕𝑥
𝜕𝑢'/𝜕𝑦

• As you can see, the correction causes 
it to “fall” toward the Nash 
equilibrium at 𝝅 = 0.5

0.5 , 𝝋 = 0.5
0.5 .
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What about tit-for-tat?
https://www.youtube.com/watch?v

=BOvAbjfJ0x0&t=331s
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𝑥
𝑦 ←

𝑥
𝑦 + 𝜂 𝑰 + 𝑪 𝜕𝑢&/𝜕𝑥

𝜕𝑢'/𝜕𝑦
…works if we only want each player to maximize their reward one game 
at a time, without thinking about future games.

• Strategies like tit-for-tat are a little more complicated: Tit-for-tat 
remembers how its opponent played last time, and retaliates if its 
opponent defected.

https://www.youtube.com/watch?v=BOvAbjfJ0x0&t=331s
https://www.youtube.com/watch?v=BOvAbjfJ0x0&t=331s


What about tit-for-tat?
https://www.youtube.com/watch?v

=BOvAbjfJ0x0&t=331s
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We can model tit-for-tat by supposing that: 

1. the reward matrix depends only on the actions, not the state
𝑟& 𝑠$ , 𝑎$ , 𝑏$ = 𝑟& 𝑎$ , 𝑏$
𝑟' 𝑠$ , 𝑎$ , 𝑏$ = 𝑟' 𝑎$ , 𝑏$

2. each player remembers a “state” variable consisting of the other player’s 
recent move:

𝑠$ = 𝑎$)&, 𝑏$)&

𝑃 𝑆$%& = 𝑠#|𝑆$ = 𝑠, 𝑎, 𝑏 = P1 𝑠′ = 𝑎, 𝑏
0 otherwise

Under these simplifications, the learning algorithm is four times harder than that of 
the episodic game: we have to learn 𝝅(𝑠$) and 𝝋(𝑠$) separately for each state.

https://www.youtube.com/watch?v=BOvAbjfJ0x0&t=331s
https://www.youtube.com/watch?v=BOvAbjfJ0x0&t=331s


What about tit-for-tat?
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The MP08 extra credit will ask you to create a strategy for a sequential 
game.  You can learn it if you want to, or you can just specify it.  For 
example, the tit-for-tat strategy is

𝝅(𝑠) =
1
0 𝑏$+& = 1
0
1 𝑏$+& = 2 or 𝑡 = 1

https://www.youtube.com/watch?v=BOvAbjfJ0x0&t=331s
https://www.youtube.com/watch?v=BOvAbjfJ0x0&t=331s


Conclusions
• Policy probabilities:

𝜋! 𝑠 = Pr 𝐴$ = 𝑎|𝑆$ = 𝑠
𝜑. 𝑠 = Pr 𝐵$ = 𝑏|𝑆$ = 𝑠

𝑢& 𝑠 =.
!,.

𝜋! 𝑠 𝜑. 𝑠 𝑟& 𝑠, 𝑎, 𝑏 + 𝛾.
",
𝑃 𝑠# 𝑠, 𝑎, 𝑏 𝑢& 𝑠#

𝝅 𝑠 = argmax
𝝅

𝑢& 𝑠

• Learning episodic games using corrected gradient ascent:
𝑥
𝑦 ←

𝑥
𝑦 + 𝜂 𝑰 + 𝑪 𝜕𝑢&/𝜕𝑥

𝜕𝑢'/𝜕𝑦


