CS 440/ECE448 Lecture 24:
Repeated Games
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Review: Markov decision process

e s € §: state of the environment (could be int, real, tuple, whatever)

* r(s) € R: reward received in state s
* u(s) € R: utility of state s = expected discounted sum of all future rewards

* a € A: action (usually A is a discrete finite set)
e m:5 = A: policy = best action for each state

* The optimum action is given by Bellman’s equation:

u(s) =r(s) + y max E P(S;pq1 =5'|S; = s, a)ul(s’)
a
S/



Review: Expectiminimax

* In a two-player, zero-sum game, each player wins exactly as much as the other
player loses.

* The player trying to maximize u(s) is called “Max,” the player trying to minimize
u(s) is called “Min.”

* Bellman’s equation:

.
r(s) + y max E P(S;y1 =5'|S; =s,a)u(s’) sisamaxstate
a
S/

u(s) =

r(s) + yminz P(S;y1 =5s'|S; =s,a)u(s’) sisaminstate
a
\ s!



Simultaneous games

* If players play simultaneously, then the best strategy might be to choose a move at
random (e.g., game of Chicken: make sure opponent can’t predict your action with
certainty)

* Instead of a scalar w(s) =action, we can use
m1(s) @1(s)

n(s)=| ¢ [el)=| :
1|4/ (S) @;3(s)

 11,(s) =probability that player 1 chooses action a in state s

* @, (s) =probability that player 2 chooses action b in state s
|A| |B|

0<m,(s) < LZna(s) =1, 0<qus) < 1,2 0, (s) = 1,
a=1 b=1



Rewards and utility for simultaneous games

* r1(s,a,b) = Reward that player 1 receives in state s if player 1
chooses action a and player 2 chooses action b

* 1,(s,a,b) = Reward that player 2 receives in state s if player 1
chooses action a and player 2 chooses action b

* u4(s) = Utility of state s for player 1
* U,(s) = Utility of state s for player 2

* P(s’|s,a, b) = Probability of a transition to s’ from s if player 1
chooses action a and player 2 chooses action b



Bellman’s equation for repeated simultaneous
two-player games

The probability of action a is m,(s), the probability of action b is ¢} (s), and the probability of a
transition to state s” is P(s’|s, a, b), so the expected sum of all future rewards under policies T and

Qis:

u(5) = ) ma(s)e(s) (rl(s, ab)+y ) P(s'ls,a b>u1<s')>

a,b

HOEDRACING (7”2 (s.a,b) +7 ) P(s'ls,a, by, (s'>)

a,b
The best policies, for each player, are:

1t(s) = argmax u;(s)
w

@(s) = argmax u,(s)
[
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Repeated games and the rational basis for cooperation

The Iterated Prisoner's Dilemma and The Evolution
of Cooperation

https://www.youtube.com/watch?v=BOvAbjfJOx0&t=331s
Image © This Place blog
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Learning an episodic game

Repeated games can be either episodic or sequential:

* Sequential: your actions can change the environment s, which
changes the reward 4 (s, a, b) and the other player’s strategy ¢@(s)

 Episodic: your actions don’t change the environment. Your reward is
ry(a, b), your strategy is m, your opponent’s reward is 1, (a, b), and
their strategy is @.

Repeating an episodic game allows us to iteratively optimize our
strategy vector 1, using methods kind of like gradient descent.



Example: The lunch game

* Alice and Bob have agreed that they should always meet
at the boat club for lunch.

* Each day, each of them must decide to either:
* Cooperate: go to the boat club for lunch
e Defect: go to the museum for lunch

* If they both cooperate, they eat lunch together
* If they both defect, they eat lunch together

* |f one cooperates and the other defects, they each eat
lunch alone

Public domain
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Example: The lunch game

* Alice prefers reading to talking
* If they eat lunch together, she gets 1 happiness
point
* If they eat lunch alone, she gets 2 happiness
points
* Bob prefers talking to reading

* If they eat lunch together, he gets 2 happiness
points

* If they eat lunch alone, he gets 1 happiness point

Bob

Defect Cooperate
2 1
1 2




Bob

Example: The lunch game Defect  Cooperate
. : [T 2 1
Alice’s strategy is T = [7'[2]
°* T, = 1+2_x is the probability she cooperates 1 2
¢ 7T1 - 1 - T[z

* Bob’s strategy is ¢ = [g;]

* Py = 1+Z-3’ is the probability he cooperates

o1 =1—-¢,



Bob

Example: The lunch game Defect  Cooperate
* Alice’s strategy is T = [Z;] 2 1
* Bob’s strategy is ¢ = [:’Z;] 1 2

* Alice’s expected reward is

u; = ' Ry = [my,15] E ﬂ [¢1]

* Bob’s expected reward is
2 111%1
u, = ' Ry = [my, 1, [1 2] [902]



Bob
The Nash Equilibrium Defect  Cooperate

* Alice’s expected reward is

u1=nT[% ﬂfﬂ 2 1

* Bob’s expected reward is 1 2

uZ:nTﬁ ;](p

* The Nash equilibrium is:

T = 0.5 _ [0-5
o5’ % los
...you can verify that this is a Nash equilibrium by noticing that

e IfmT = 82, then Bob has no preference between cooperating and defecting, so he can

choose at random.

* Ifp = 8;, then Alice has no preference, and can choose at random.




Simultaneous gradient ascent

. - S S
u; =R,  up =TT Ry, n:[e /(1+e™) _[e¥/A+e )]

1/1+e ™) |7 Tl 1/ +e™)

* Can we use some type of machine learning algorithm to find the “optimum values” of i
and ¢, i.e., the Nash equilibrium?

* Alice chooses 1T to maximize u, for any given ¢
* Bob chooses ¢ to maximize u, for any given

* One thing we can try is “simultaneous gradient ascent:” adjust x and y in order to
maximize both u; and u; simultaneously:

X X V,uy
ly] < [y] +1 [Vyu2]
* (..where V,u, is general notation for the gradient of u; w.r.t. x. In this case, since x is a
scalar, V,u,; = du,/0x)



Try the quiz!

Try the quiz:
https://us.prairielearn.com/pl/course instance/147925/assessment/24
08126



https://us.prairielearn.com/pl/course_instance/147925/assessment/2408126
https://us.prairielearn.com/pl/course_instance/147925/assessment/2408126

Simultaneous gradient ascent

* Surprisingly, simultaneous
gradient ascent fails.

* The graph at right is the
sequence of vectors

ﬂz] _ [1/(1 +e™)
¥21  [1/(1+e7Y)

...obtained using

= [+ [5elo]

o
o

o
~

o
o

o
FS

Probability that player 1 cooperates
(=} (=}
w w

o
(N}

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Probability that player 0 cooperates



Simultaneous gradient ascent

0.8 4
* Why does it never converge?

 If Bob is at the boat club w/prob ¢, < 0.5,
then Alice increases x (so she can eat alone
more often)

* If Alice is at the boat club w/prob T, > 0.5,
then Bob increases y (so he can eat with her

more often)

 If Bob is at the boat club w/prob ¢, > 0.5,
then Alice decreases x (so she can eat alone
more often)

* If Alice is at the boat club w/prob T, < 0.5,
then Bob decreases y (so he can eat with her
more often) 0.2 1

0.7 A

Probability that player 1 cooperates
o
(9]

* ...and so on, forever. 0.2 03 04 05 06 07 08
Probability that player 0 cooperates



Digression: orbital mechanics

0.8 -1
* This is exactly like the orbit of a

spaceship around a planet (the
equations are the same)

0.7 A

* We can make it converge the
same way we would make a
spaceship’s orbit decay: apply
friction

Probability that player 1 cooperates
o
(9]

I I

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Probability that player 0 cooperates



The symplectic correction

* The solution is to apply friction. The friction term we apply is
something that (Balduzzi et al., 2018) called “the symplectic
correction “ (named after orbital mechanics a.k.a. symplectic
mechanics). It looks like this:

o, /2
lﬂ < lﬂ +n{ +C) [aZl;aﬂ

* The matrix C is called the symplectic correction. Itis C = A(H' — H),
where A is a scalar, and H is something called the Hessian:
0%u,/0x* 0%uy/0x0y

H =
lazuz/axay 0%u,/0y?



Corrected gradient ascent

The logits have converged to: [ 0.00086998 -0.00093214]

* The graph at right is the sequence of 0.8
vectors
nzl B [1/(1 +e™) 0.7
21 " [1/(1+e7Y)

...obtained using
X X ou,/0x
[y] < ly] I +0) [auz/ay]

* As you can see, the correction causes
it to “fall” toward the Nash

Probability that player 1 cooperates
o
(&)

0.3

el s _ [0.5 _ [0.5
equilibrium at w = 0.5], Q= [0.5 .

0.3 0.4 0.5 0.6 0.7
Probability that player 0 cooperates
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 Learning a sequential game



https://www.youtube.com/watch?v
=BOVAD|TJOX0&t=331s

What about t|t_for_tat? Image © This Place blog

The Iterated Prisoner's Dilemma and The Evolution
of Cooperation

X X ouq/0x

yl < [yl +na+o [auz /ay]
...works if we only want each player to maximize their reward one game
at a time, without thinking about future games.

* Strategies like tit-for-tat are a little more complicated: Tit-for-tat
remembers how its opponent played last time, and retaliates if its
opponent defected.


https://www.youtube.com/watch?v=BOvAbjfJ0x0&t=331s
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What about tit-for-tat?

We can model tit-for-tat by supposing that:

1. the reward matrix depends only on the actions, not the state
r1(S¢, ag, be) = r1(ag, by)
r2(St, ag, be) = r2(ag, by)
2. each player remembers a “state” variable consisting of the other player’s
recent move:
st = (@1, br—1)
1 s'=(a,b)

P(S;., =5s'|S; =s,a,b) =
(St1 15 ) {O otherwise

Under these simplifications, the learning algorithm is four times harder than that of
the episodic game: we have to learn (s;) and @(s;) separately for each state.


https://www.youtube.com/watch?v=BOvAbjfJ0x0&t=331s
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What about tit-for-tat?

The MPO08 extra credit will ask you to create a strategy for a sequential
game. You can learn it if you want to, or you can just specify it. For
example, the tit-for-tat strategy is

f_
by_1 =1
T(s) =<

oo -

b1 =2o0rt=1


https://www.youtube.com/watch?v=BOvAbjfJ0x0&t=331s
https://www.youtube.com/watch?v=BOvAbjfJ0x0&t=331s

Conclusions

* Policy probabilities:
mq(s) = Pr(4; = a|S; = 5)
¢p(s) = Pr(B; = b|S; = 5)

w () = ) ma(5)e(s) <r1<s, ab)+y ) P@'lsa b>u1<s'>>

a,b

n(s) = argmaxu4(s)
w

* Learning episodic games using corrected gradient ascent:

[l = [l+na+o 5



