CS440/ECE448 Lecture 20:
Markov Decision Processes

Mark Hasegawa-Johnson, 3/2024

These slides are in the public domain.

Grid World

Invented and drawn by Peter Abbeel and Dan
Klein, UC Berkeley CS 188

Outline

* Problem statement

* Utility

* The discount factor

* Value lteration

* Policy Iteration

* Comparison of value iteration and policy iteration

How does an intelligent agent plan its
actions?

* If there is no randomness: Use A* search to plan the best path

* What if our movements are affected by randomness?

Example: Grid World

Invented by Peter Abbeel and Dan Klein

* Maze-solving problem: state is
s=(i,j),where0) <i<2is
therowand 0 < j < 3isthe
column.

* The robot is trying to find its way -
to the diamond.

* |If it reaches the diamond, it gets
a reward of r((0,3)) = +1 and
the game ends.

e If it falls in the fire it gets a
reward of r((1,3)) = —1 and
the game ends.

Example: Grid World

Invented by Peter Abbeel and Dan Klein

Randomness: the robot has shaky
actuators. If it tries to move
forward,

* With probability 0.8, it succeeds
* With probability 0.1, it falls left
* With probability 0.1, it falls right

Markov Decision Process

A Markov Decision Process (MDP) is defined by:
* A set of states, s € §
* A set of actions, a € A

* A transition model, P(S¢11 = S¢41|St = S, ap)
* S; isthe state at time t
* a; is the action taken at time t (not random)

* A reward function, r(s)

Solving an MDP: The Policy

* The solution to a maze is a path: the shortest path from start to goal

* In MDP, finding 1 path is not enough: randomness might cause us to
accidentally deviate from the optimal path.

Solving an MDP: The Policy

* Since P(St+1 = Se41|Se = st, ay)
and r(s) depend only on the state
(the model is Markov), a complete
solution can be expressed as
follows:

 What is the best action to take in
any given state?

* A policy, a = m(s), is a function
telling you, for any state s, what is
the best action to take in that
state.

Outline

* Utility

* The discount factor

* Value Iteration

* Policy Iteration

* Comparison of value iteration and policy iteration

Utility

The utility of a state, u(s), is
defined to be:

e the sum of all current and future
rewards that can be achieved if
we start in state s,

* ...if we choose the best possible
sequence of actions,

e ...and if we average over all
possible results of those actions.

Example: Game show

* You’ve been offered a spot as a contestant in a game show.

* Reward: you receive successively larger prizes for each question you answer
correctly, but if you answer any question incorrectly, you lose it all.

* Transition: the questions become harder and harder to answer.

* Actions: after each question, you can decide whether to take another
guestion, or stop.

$100 $1,000 $10,000 $50,000
question qguestion question question
Correct:

Correct Correct $61,100
l 1/100 l 3/4 l 1/2 l 1/10
99/100 1/4 1/2 9/10

Incorrect: Incorrect: Incorrect: Incorrect:

S0 S0 S0 S0

Correct

Quit: Quit: Quit:
$100 $1,100 $11,100

Example: Game show

Policy:

* |f you’ve correctly answered N-1 questions, should you attempt question
QN, or stop?

$100 $1,000 $10,000 $50,000
question qguestion question question
Correct:
Correct Correct Correct $61,100
l 1/100 l 3/4 l 1/2 l 1/10
99/100 1/4 1/2 9/10
Incorrect: Incorrect: Incorrect: Incorrect:
SO S0 SO S0
Quit: Quit: Quit:

$100 $1,100 $11,100

Example: Game show

Policy m(Q4): If you've correctly answered 3 questions, should you attempt
question Q4, or stop?

* If you stop: total reward is $11,100
* If you attempt Q4: expected total reward is 1—10 x61100 +1—90 X0 =$6110

Policy: m(Q4) = stop. Utility: u(Q4) = $11,100
$100 $1,000 $10,000 $50,000
question qguestion question question
Correct:
Correct Correct Correct $61,100
l 1/100 l 3/4 l 1/2 l 1/10
99/100 1/4 1/2 9/10
Incorrect: Incorrect: Incorrect: Incorrect:
SO S0 S0 S0
Quit: Quit: Quit:

$100 $1,100 $11,100

Example: Game show

Policy m(Q3): If you've correctly answered 2 questions, should you attempt
question Q3, or stop?

* If you stop: total reward is $1,100
* If you attempt Q3: expected total reward is % x$11,100 +§ X0 = $5550

Policy: m(Q3) = continue. Utility: u(Q3) = $5550
$100 $1,000 $10,000 $50,000
question qguestion question question
Correct:
Correct Correct Correct $61,100
l 1/100 l 3/4 1/2 l 1/10
99/100 1/4 1/2 9/10
Incorrect: Incorrect: Incorrect: Incorrect:
SO S0 S0 S0
Quit: Quit: Quit:

$100 $1,100 $11,100

Example: Game show

Policy m(Q2): If you've correctly answered 1 question, should you attempt
question Q2, or stop?

* If you stop: total reward is $100
* If you attempt Q2: expected total reward is ZX$5550 +71L X0 = $4162.50

Policy: m(Q2) = continue. Utility: u(Q2) = $4162.50
$100 $1,000 $10,000 $50,000
question qguestion question question
Correct:
Correct Correct Correct $61,100
l 1/100 3/4 1/2 l 1/10
99/100 1/4 1/2 9/10
Incorrect: Incorrect: Incorrect: Incorrect:
SO S0 S0 S0
Quit: Quit: Quit:

$100 $1,100 $11,100

Example: Game show

Policy m(Q1): If you've correctly answered no questions, then you have
nothing to lose, so even though the chance of success is very small, you
might as well try it!

Policy: m(Q1) = continue. Utility: u(Q1) = $41.63
$100 $1,000 $10,000 $50,000
question qguestion question question
Correct:
Correct Correct Correct $61,100
1/100 3/4 1/2 l 1/10
99/100 1/4 1/2 9/10
Incorrect: Incorrect: Incorrect: Incorrect:
SO S0 SO S0
Quit: Quit: Quit:

$100 $1,100 $11,100

Utility

The utility of a state, u(s), is

* ...the maximum, over all possible sequences of actions, of

* ...the expected value, over all possible results of those actions, of
e ...the total of all future rewards.

u(s) =r(s) + mc?xz P(s'|s,a) <r(s’) + rrha,\xz P(s"|s', s)(r(s") + -+ wv o

Utility

The utility of a state, u(s), is

* ...the maximum, over all possible sequences of actions, of

* ...the expected value, over all possible results of those actions, of
e ...the utility of the resulting state.

u(s) =r(s) + mc?xz P(Siyq1 =5'|S; = s, a)ul(s’)

Outline

* The discount factor

* Value Iteration

* Policy Iteration

* Comparison of value iteration and policy iteration

Discount factor

You have just won a contest sponsored by the Galaxia Foundation.
They offer you the choice of two options:

* 560,000 right now, or...
 S1000 per year, paid to you and your heirs annually forever.

Which option is better?

Discount factor

* Inflation has averaged 3.8% annually from 1960 to 2024.

* Equivalently, $1000 received one year from now is worth
approximately $962 today.

* A reward of S1000 annually forever (starting today, t=0) is equivalent
to an immediat%oreward of

1000
r= Z 1000(0.962)t = = $26,316
t=0

1—0.962

We call the factor y = 0.962 the discount factor.

Discount factor

Why is a dollar tomorrow worth less than a
dollar today?

* A dollar will buy less tomorrow

* The person paying you might go out of
business

* You might have to go into hiding and
become unable to collect

The discount factor, y , is our model of the

Public domain image of J. Wellington Wimpy,
the character who popularized the saying “1 will

unknowable uncertainty of promised future gladly pay you Tuesday for a hamburger today.”
rewards.

https://commons.wikimedia.org/wiki/File:Wimpyh
otdog.png

https://commons.wikimedia.org/wiki/File:Wimpyhotdog.png
https://commons.wikimedia.org/wiki/File:Wimpyhotdog.png

The Bellman Equation

u(s) = r(s) + y max E P(S;pq1 =5'|S; = s, a)u(s’)
a
S/

* The Bellman equation specifies the utility of the current state.

* In solving the Bellman equation, we also find the optimum action, which is
the policy.

* However...

The Bellman Equation

w] D)
L@J_L@)

* If there are n states, then the Bellman equation is n nonlinear equations in
n unknowns.

P(1|1,a) -+ P(1n,a)1[u(l)

+ ¥ max :
u(N)

a

P(n.l,a) P(n .n,a)

* There is no closed-form solution; we must use an iterative solution

Outline

* Value Iteration
* Policy Iteration
* Comparison of value iteration and policy iteration

Value iteration

The Bellman Equation:

u(s) =r(s)+vy maxz P(s'|s,a)u(s’)
a
S/
Value iteration solves the Bellman equation iteratively. In iteration number i,
fori =01, ..,
* For all states s, u;(s) is an estimate of u(s)

e Start out with uy(s) = 0 for all states
* In the i™ iteration,

u;(s) =r(s) +y maztaxz P(s'|s,a)u;_,(s")

Value iteration

u;(s) =r(s)+vy mglxz P(s'|s,a)u;_1(s")

Notice that:

* After i iterations, u;(s) has information about the rewards earned in
the first i steps after the agent starts the maze

* A policy designed based on u;(s) will act in order to maximize reward
in the first i steps of the maze

* In this sense, it’s kind of like BFS: each iteration explores farther and
farther away from the starting state.

Example: Grid world

r(s)
Transition model P(s'|s, a):
3 ||-0.04|]||-0.04[]||-0.04|| L1 0.8
0.1 0.1
2 -0.04 -0.04 -1

1 START |[-0.041]]-0.04 -0.04

1 2 3 4
Assume a “loitering penalty” of r(s) = —0.04 for all non-terminal states.

Value Iteration: Iteration 1

u(s) =r(s)+y mC?XE P(s'|s,a)uy(s’)

uq(s)

r(s)

Up(s)

—0.04|—-0.04 —0.04

—0.04

—0.04|—-0.04 —0.04

—0.04

—0.04|-0.04 |—0.04

—0.04

—0.04|-0.04 |—0.04

—0.04

Value Iteration: Iteration 2 w(s) =r(s) +ymax) P(s'ls,u(s)

U, (s)

—0.08—0.08+0.75

—0.08

—0.08-0.08—-0.08—0.08

—0.04

—0.04—0.04-0.04

—0.04

Z P(s'|s,down)u, (s")

> Pl uply ()

—0.04—0.04H0.06

—0.04—0.04H0.06

—0.04

—0.04

—0.04

—0.81

+y max||
a

—0.04

—0.04

—0.04-0.04-0.04

—0.14

—0.04—0.04-0.04

—0.14

Quiz

Try the quiz!
https://us.prairielearn.com/pl/course instance/147925/assessment/24
03836

https://us.prairielearn.com/pl/course_instance/147925/assessment/2403836
https://us.prairielearn.com/pl/course_instance/147925/assessment/2403836

Outline

* Policy Iteration
* Comparison of value iteration and policy iteration

Method 2: Policy Iteration

* Policy Evaluation: u;(s) =r(s) + ¥ X P(s'|s, m;(s))u;(s")
* Given a fixed policy m;(s),
* Calculate the resulting utility u;(s).
* Policy Improvement: ;,,(s) = argmax), P(s'|s, a)u;(s")
a

 Given a fixed utility u;(s),
* Find an improved m;,1(s).

* Unlike Value Iteration, this is guaranteed to converge in a finite
number of steps (less than or equal to the number of distinct policies)

Step 1: Policy Evaluation

Bellman equation: n nonlinear equations in n unknowns:

u(1) r(1) P(1|1,a) -+ P(1n,a)]Tu(l)
[:] = [: | +ymax E : E
u(n) r(n) “ [P(n|1,a) - PMmna)llu(N)
Policy Evaluation: n linear equations in n unknowns:
u; (1) 7‘(1) P(l 1L,m(1) - PAnm(n))][ui(1)
[ui@) painm@) - i) lun

The difference is that policy evaluation is linear, so it can be solved by
inverting a matrix: w; = (I — yP;) ™ 'r.

Example: Grid World

Policy Evaluation: u;(s) = r(s) + y X P(s'|s, m;(s))u; (s")
* Assume the initial policy is m;(s) = “Go Right” for all states

* Solve the linear equations to find u; (s)

U (S)

+0.50

—0.65

—1.40

+0.69 |4+0.74

—1.441-1.39

—1.40

Policy Improvement

Policy Evaluation: u;(s) = r(s) + y X5, P(s'|s, m; (s))u;(s)

Policy Improvement: ;1 (s) = argmax),.s P(s'|s, a)u;(s")

5 (S)

a

U (S)

+0.50 [+0.69 |+0.74

—0.65

—1.40|—1.44|—1.39

—1.40

Outline

* Comparison of value iteration and policy iteration

Value iteration

Optimal utilities with discount factor 1
(Result of value iteration)

0.812 0.868 0.918 + 1

0.762 0.660 -1

0.705 0.655 0.611 0.388
1 2 3 4

Utility estimates

1 (4.3)
"""""""""""""""""""""" (3,3)
0.8 1,
e (1,1)
0.6 .': [— (3,1)
I @.1)
02 .",' /f;’,-
01] ':
N
024 ™
0 5 10 15 20 25 30

Number of iterations

Final policy

s | = | = | = | O

Comparison of value iteration and policy
iteration

* Bellman equation is n equations in n unknowns; cannot be solved in
closed form, needs an iterative solution

* Value iteration
* Behaves like BFS: each iteration looks one step farther from the start node
* Usually converges exponentially fast to the correct policy
* However, if there are loops possible in the maze, may never converge exactly

* Policy iteration
* Kind of like gradient descent: evaluate a policy, then improve it
* Guaranteed to converge in a finite number of steps
* Harder to implement, and might take a while before it starts to converge

Summary

* Bellman equation:
u(s) =r(s) + y max E P(Siy1 =SS = s, a)u(s’)
a
S/

* Value iteration:
u;(s) =r(s) + ymgxz P(Stpq =5'|St = s, a)uj_1(s)
S/

* Policy iteration:

w(s) = 1() +7) P(Sear = 5'1Se = 5, ()ui(s)

Tiaa(s) = argmax) P(Spy = 5S¢ = 5, (s
a 7
S

