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How does an intelligent agent plan its 
actions?
• If there is no randomness: Use A* search to plan the best path
• What if our movements are affected by randomness?



Example: Grid World
Invented by Peter Abbeel and Dan Klein

• Maze-solving problem: state is 
𝑠 = (𝑖, 𝑗), where 0 ≤ 𝑖 ≤ 2 is 
the row and 0 ≤ 𝑗 ≤ 3 is the 
column.  
• The robot is trying to find its way 

to the diamond.
• If it reaches the diamond, it gets 

a reward of 𝑟((0,3)) = +1 and 
the game ends.
• If it falls in the fire it gets a 

reward of 𝑟((1,3)) = −1 and 
the game ends.



Example: Grid World
Invented by Peter Abbeel and Dan Klein

Randomness: the robot has shaky 
actuators.  If it tries to move 
forward,
• With probability 0.8, it succeeds
• With probability 0.1, it falls left
• With probability 0.1, it falls right 0.8 0.10.1

Source: P. Abbeel and D. Klein 



Markov Decision Process

A Markov Decision Process (MDP) is defined by:
• A set of states, 𝑠 ∈ 𝒮
• A set of actions, 𝑎 ∈ 𝒜
• A transition model, 𝑃(𝑆!"# = 𝑠!"#|𝑆! = 𝑠!, 𝑎!) 

• 𝑆!  is the state at time t
• 𝑎!  is the action taken at time t (not random)

• A reward function, 𝑟(𝑠)



Solving an MDP: The Policy

• The solution to a maze is a path: the shortest path from start to goal
• In MDP, finding 1 path is not enough: randomness might cause us to 

accidentally deviate from the optimal path.



Solving an MDP: The Policy

• Since 𝑃(𝑆!"# = 𝑠!"#|𝑆! = 𝑠!, 𝑎!) 
and 𝑟(𝑠)	depend only on the state 
(the model is Markov), a complete 
solution can be expressed as 
follows:
• What is the best action to take in 

any given state?
• A policy, 𝑎 = 𝜋(𝑠), is a function 

telling you, for any state 𝑠, what is 
the best action to take in that 
state.  
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Utility

The utility of a state, 𝑢(𝑠), is 
defined to be:
• the sum of all current and future 

rewards that can be achieved if 
we start in state 𝑠,
• …if we choose the best possible 

sequence of actions, 
• …and if we average over all 

possible results of those actions.



Example: Game show
• You’ve been offered a spot as a contestant in a game show.
• Reward: you receive successively larger prizes for each question you answer 

correctly, but if you answer any question incorrectly, you lose it all.
• Transition: the questions become harder and harder to answer.
• Actions: after each question, you can decide whether to take another 

question, or stop.
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Example: Game show
Policy:
• If you’ve correctly answered N-1 questions, should you attempt question 

QN, or stop?
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Example: Game show
Policy 𝜋(𝑄4):  If you’ve correctly answered 3 questions, should you attempt 
question Q4, or stop?
• If you stop: total reward is $11,100

• If you attempt Q4: expected total reward is  ##$×61100 +
%
#$×0 = $6110

Policy: 𝜋 𝑄4 = stop.                        Utility: 𝑢(𝑄4) = $11,100
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Example: Game show
Policy 𝜋(𝑄3):  If you’ve correctly answered 2 questions, should you attempt 
question Q3, or stop?
• If you stop: total reward is $1,100

• If you attempt Q3: expected total reward is  #&×$11,100 +
#
&×0 = $5550

Policy: 𝜋 𝑄3 = continue.                        Utility: 𝑢(𝑄3) = $5550
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Example: Game show
Policy 𝜋(𝑄2):  If you’ve correctly answered 1 question, should you attempt 
question Q2, or stop?
• If you stop: total reward is $100

• If you attempt Q2: expected total reward is  '(×$5550 +
#
(×0 = $4162.50

Policy: 𝜋 𝑄2 = continue.                        Utility: 𝑢(𝑄2) = $4162.50
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Example: Game show
Policy 𝜋(𝑄1):  If you’ve correctly answered no questions, then you have 
nothing to lose, so even though the chance of success is very small, you 
might as well try it!
Policy: 𝜋 𝑄1 = continue.                        Utility: 𝑢(𝑄1) = $41.63
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Utility

The utility of a state, u(s), is 
• …the maximum, over all possible sequences of actions, of
• …the expected value, over all possible results of those actions, of
• …the total of all future rewards.

𝑢 𝑠 = 𝑟 𝑠 + max
"

+
#$

𝑃 𝑠′|𝑠, 𝑎 𝑟 𝑠′ + max
"$

+
#$$

𝑃 𝑠′′|𝑠′, 𝑠′ 𝑟 𝑠′′ + ⋯	⋯	⋯



Utility

The utility of a state, u(s), is 
• …the maximum, over all possible sequences of actions, of
• …the expected value, over all possible results of those actions, of
• …the utility of the resulting state.

𝑢 𝑠 = 𝑟 𝑠 +max
)
M
*+

𝑃 𝑆!"# = 𝑠′|𝑆! = 𝑠, 𝑎 𝑢 𝑠′
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Discount factor

You have just won a contest sponsored by the Galaxia Foundation.  
They offer you the choice of two options:
• $60,000 right now, or…
• $1000 per year, paid to you and your heirs annually forever.

Which option is better?



Discount factor

• Inflation has averaged 3.8% annually from 1960 to 2024.
• Equivalently, $1000 received one year from now is worth 

approximately $962 today.
• A reward of $1000 annually forever (starting today, t=0) is equivalent 

to an immediate reward of

𝑟 =M
!,$

-

1000(0.962)! =
1000

1 − 0.962 = $26,316

We call the factor 𝛾 = 0.962 the discount factor.



Discount factor

Why is a dollar tomorrow worth less than a 
dollar today?
• A dollar will buy less tomorrow
• The person paying you might go out of 

business
• You might have to go into hiding and 

become unable to collect
The discount factor, 𝛾	, is our model of the 
unknowable uncertainty of promised future 
rewards.

Public domain image of J. Wellington Wimpy, 
the character who popularized the saying “I will 
gladly pay you Tuesday for a hamburger today.” 

https://commons.wikimedia.org/wiki/File:Wimpyh
otdog.png

https://commons.wikimedia.org/wiki/File:Wimpyhotdog.png
https://commons.wikimedia.org/wiki/File:Wimpyhotdog.png


The Bellman Equation

𝑢 𝑠 = 𝑟 𝑠 + 𝛾max
)
M
*+

𝑃 𝑆!"# = 𝑠′|𝑆! = 𝑠, 𝑎 𝑢 𝑠′

• The Bellman equation specifies the utility of the current state.
• In solving the Bellman equation, we also find the optimum action, which is 

the policy.
• However…



The Bellman Equation

𝑢(1)
⋮

𝑢(𝑛)
=

𝑟(1)
⋮

𝑟(𝑛)
+ 𝛾max

)

𝑃(1|1, 𝑎) ⋯ 𝑃(1|𝑛, 𝑎)
⋮ ⋱ ⋮

𝑃(𝑛|1, 𝑎) ⋯ 𝑃(𝑛|𝑛, 𝑎)

𝑢(1)
⋮

𝑢(𝑁)

• If there are n states, then the Bellman equation is n nonlinear equations in 
n unknowns.
• There is no closed-form solution; we must use an iterative solution



Outline

• Problem statement
• Utility
• The discount factor
• Value Iteration
• Policy Iteration
• Comparison of value iteration and policy iteration



Value iteration

The Bellman Equation:

𝑢 𝑠 = 𝑟 𝑠 + 𝛾max
!
*
"#

𝑃 𝑠′|𝑠, 𝑎 𝑢 𝑠′

Value iteration solves the Bellman equation iteratively.  In iteration number 𝑖, 
for 𝑖 = 0,1, …, 
• For all states 𝑠, 𝑢$(𝑠) is an estimate of 𝑢(𝑠)
• Start out with 𝑢% 𝑠 = 0 for all states
• In the 𝑖&' iteration,

𝑢$(𝑠) = 𝑟 𝑠 + 𝛾max
!
*
"#

𝑃 𝑠′|𝑠, 𝑎 𝑢$()(𝑠′)



Value iteration

𝑢.(𝑠) = 𝑟 𝑠 + 𝛾max
)
M
*+

𝑃 𝑠′|𝑠, 𝑎 𝑢./#(𝑠′)

Notice that:
• After 𝑖 iterations, 𝑢.(𝑠) has information about the rewards earned in 

the first 𝑖 steps after the agent starts the maze
• A policy designed based on 𝑢.(𝑠) will act in order to maximize reward 

in the first 𝑖 steps of the maze
• In this sense, it’s kind of like BFS: each iteration explores farther and 

farther away from the starting state.



Example: Grid world

Transition model 𝑃(𝑠$|𝑠, 𝑎):

-0.04 -0.04 -0.04

-0.04

-0.04-0.04-0.04

-0.04

Assume a “loitering penalty” of 𝑟(𝑠) = −0.04 for all non-terminal states.

𝑟(𝑠)



Value Iteration: Iteration 1

0 0 0

0 0

0 0 0 0

𝑢!(𝑠)

𝑢! 𝑠 = 𝑟 𝑠 + 𝛾max
"
*
#$

𝑃 𝑠$ 𝑠, 𝑎 𝑢% 𝑠′
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Value Iteration: Iteration 2 𝑢% 𝑠 = 𝑟 𝑠 + 𝛾max
"

+
#$

𝑃 𝑠$ 𝑠, 𝑎 𝑢& 𝑠′
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0
!"
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Quiz

Try the quiz!
https://us.prairielearn.com/pl/course_instance/147925/assessment/24
03836

https://us.prairielearn.com/pl/course_instance/147925/assessment/2403836
https://us.prairielearn.com/pl/course_instance/147925/assessment/2403836
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Method 2: Policy Iteration

• Policy Evaluation: 𝑢'(𝑠) = 𝑟 𝑠 + 𝛾 ∑#$𝑃 𝑠′|𝑠, 𝜋'(𝑠) 𝑢'(𝑠′)
• Given a fixed policy 𝜋'(𝑠), 
• Calculate the resulting utility 𝑢'(𝑠).

• Policy Improvement:  𝜋'(& 𝑠 = argmax
"

∑#$ 𝑃 𝑠′|𝑠, 𝑎 𝑢' 𝑠$

• Given a fixed utility 𝑢'(𝑠), 
• Find an improved 𝜋'(&(𝑠).

• Unlike Value Iteration, this is guaranteed to converge in a finite 
number of steps (less than or equal to the number of distinct policies)



Step 1: Policy Evaluation
Bellman equation: n nonlinear equations in n unknowns:

𝑢(1)
⋮

𝑢(𝑛)
=

𝑟(1)
⋮

𝑟(𝑛)
+ 𝛾max

)

𝑃(1|1, 𝑎) ⋯ 𝑃(1|𝑛, 𝑎)
⋮ ⋱ ⋮

𝑃(𝑛|1, 𝑎) ⋯ 𝑃(𝑛|𝑛, 𝑎)

𝑢(1)
⋮

𝑢(𝑁)
Policy Evaluation: n linear equations in n unknowns:

𝑢.(1)
⋮

𝑢.(𝑛)
=

𝑟(1)
⋮

𝑟(𝑛)
+ 𝛾

𝑃(1|1, 𝜋. 1 ) ⋯ 𝑃(1|𝑛, 𝜋. 𝑛 )
⋮ ⋱ ⋮

𝑃(𝑛|1, 𝜋. 1 ) ⋯ 𝑃(𝑛|𝑛, 𝜋. 𝑛 )

𝑢.(1)
⋮

𝑢.(𝑁)
The difference is that policy evaluation is linear, so it can be solved by 
inverting a matrix: 𝒖. = 𝑰 − 𝛾𝑷. /#𝒓.



Example: Grid World

→ → →

→ →

→ → → →

𝜋"(𝑠)
+0.50 +0.69 +0.74

−0.65 −0.90

−1.40 −1.44 −1.39 −1.40

𝑢)(𝑠)

Policy Evaluation: 𝑢'(𝑠) = 𝑟 𝑠 + 𝛾 ∑#$𝑃 𝑠′|𝑠, 𝜋'(𝑠) 𝑢'(𝑠′)

• Assume the initial policy is 𝜋# 𝑠 = “Go	Right” for all states
• Solve the linear equations to find 𝑢#(𝑠)



Policy Improvement

→ → →

→ →

→ → → →

𝜋"(𝑠)
→ → →

↑ ↑

↑ → ↑ ↑

𝜋#(𝑠)
+0.50 +0.69 +0.74

−0.65 −0.90

−1.40 −1.44 −1.39 −1.40

𝑢)(𝑠)

Policy Evaluation: 𝑢'(𝑠) = 𝑟 𝑠 + 𝛾 ∑#$𝑃 𝑠′|𝑠, 𝜋'(𝑠) 𝑢'(𝑠′)

Policy Improvement:  𝜋'(& 𝑠 = argmax
"

∑#$ 𝑃 𝑠′|𝑠, 𝑎 𝑢' 𝑠$
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Value iteration
Optimal utilities with discount factor 1
(Result of value iteration)

Final policy



Comparison of value iteration and policy 
iteration
• Bellman equation is 𝑛 equations in 𝑛 unknowns; cannot be solved in 

closed form, needs an iterative solution
• Value iteration

• Behaves like BFS: each iteration looks one step farther from the start node
• Usually converges exponentially fast to the correct policy
• However, if there are loops possible in the maze, may never converge exactly

• Policy iteration
• Kind of like gradient descent: evaluate a policy, then improve it
• Guaranteed to converge in a finite number of steps
• Harder to implement, and might take a while before it starts to converge



Summary
• Bellman equation:

𝑢 𝑠 = 𝑟 𝑠 + 𝛾max
$

4
!"

𝑃 𝑆%&# = 𝑠′|𝑆% = 𝑠, 𝑎 𝑢 𝑠′

• Value iteration:

𝑢'(𝑠) = 𝑟 𝑠 + 𝛾max
$

4
!"

𝑃 𝑆%&# = 𝑠′|𝑆% = 𝑠, 𝑎 𝑢'(#(𝑠′)

• Policy iteration:

𝑢'(𝑠) = 𝑟 𝑠 + 𝛾4
!"

𝑃 𝑆%&# = 𝑠′|𝑆% = 𝑠, 𝜋'(𝑠) 𝑢'(𝑠′)

𝜋'&# 𝑠 = argmax
$

4
!!
𝑃 𝑆%&# = 𝑠′|𝑆% = 𝑠, 𝑎 𝑢' 𝑠"


