Lecture 18:
Search

Mark Hasegawa-Johnson
Lecture slides CCO
e

Johannes Hevelius observing with one of his telescopes (1647).

By Claudio Oliveira Lim..., CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=46626573

https://commons.wikimedia.org/w/index.php?curid=46626573

Outline

* Search Problems: start, goal, neighborhood

* Depth-first search (DFS): completeness, admissibility, & optimality
* Breadth-first search (BFS)

* Uniform-cost search (UCS)

Agents and their environments

X

Naive Bayes
Iterated Games
Reinforcement

>

Stochastic Transitions (vs. Deterministic)
Partially Observable State (vs. Fully)

Continuous State (vs. Discrete)

X X X X

Unknown Rules (vs. Known)

Sequential (vs. Episodic) X X

X X X X X X

Multi-Agent (vs. Single) X

Dynamic (vs. Static)

Search problems

A search problem is defined by:

* A (possibly infinite) set of states or nodes, n € V'
* The agent must start in a “start state” s.
* The agent must reach any “goal state” t € 7', where T c V..

* A set of transitions
* I'(n) = the set of states that are neighbors of n.
* h(m,n) = cost of the shortest path from m ton, h(m,n) > 0.

Example: Road Trip

We’re in Champaign-Urbana. We want to plan a road trip to see New
York and Washington, D.C.

e V' = set of all towns and cities in the United States
s ={n: n.loc = Urbana, n.NY = False,n.DC = False}
T ={n: n.NY = True,n.DC = True}

* ['(n) = set of cities reachable from n.loc
* If m.loc=NY for any m € I'(n), set m.NY=True
* If m.loc=DC for any m € I'(n), set m.DC=True
* Otherwise, m.NY=n.NY and m.DC=n.DC

* h(m,n) = distance, in miles, from m.loc to n.loc

RS L FiSherRi{ﬁOmGiffo—TdT

Neighborhood

Ghaf‘r:paiblné—hbt%osepn= =

* The neighborhood function, I'(n), |]
. . Savoy
finds the neighbors of a node —Moticell ﬁ;’s
105 Tolbno
* It also gives you the distance a
h(n, m) from n to each neighbor S
Illa Grove
@, Tu?cola H
N “ L
Champaign
4
12 23

St. Joseph Mahomet Monticello

Tuscola

Solution strategies

 Random walk: Just start driving
* Advantages: No thinking required
* Disadvantages: We might never get there

* Planned walk: Explore every possible path, and choose the shortest
* Advantages: Reach goal, Spend the least possible amount of gas
* Disadvantages: Lots of computation

Search algorithms compute a path to the goal (possibly the shortest) by
describing many partial paths (description = list of states on each path).

Outline

* Depth-first search (DFS): completeness, admissibility, & optimality
* Breadth-first search (BFS)
* Uniform-cost search (UCS)

Depth-first search

* Depth-first search is sort of like a random walk, but in software, not in
real life

* Advantage: if the random walk doesn’t reach the goal, then we have
only spent electricity, not gas

=] jows
]Bﬁﬁﬁnnet

Depth-first search

e Chéhpéi$1=3tﬂ—w
— Y [~Josepn-=
| H— s

Sagoy

@ Mahomet

* Choose, at random, n; =one of
the neighbors of s

|dh — StJoseph-

Depth-first search | K

hSavoy

* Choose, at random, n; =one of
the neighbors of s M/v |

Mahomet

* Choose, at random, n, = one @hampa.g..‘,ismeph, = 0akwood™
|

of the neighbors of n;. | l

* Make sure not to choose a state
you’ve already explored

|dh —StJoseph=

Depth-first search | K

hSavoy

* Choose, at random, n; =one of
the neighbors of s M/v |

Mahomet

* Choose, at random, n, = one @hampa.g..‘,ismeph, = 0akwood™
|

of the neighbors of n;. | i
* Make sure not to choose a state /.

! ~StJoseph———Oakwood ~-Danville——
you’ve already explored ¢ | ,

* Repeat @

. By 4
Depth-first search ;3”\‘—

¥
7

“ Sayoy

* Choose, at random, n; =one of

the neighbors of s /” |
* Choose, at random, n, = one fChampa'gn*suoseph S ol Vahomet
of the neighbors of n;. - | |
* Make sure not to choose a state =stuoseph-—Oakwood Danville——
you’ve already explored | e
Rossville
* Repeat @
* Repeat
“
/| _——Covington
=OaRiigod <DaIE——— ==

|
Westville

Problems with depth-first search

* It might run forever, without ever finding a path to the goal
* If it finds a path to the goal, there’s no guarantee it finds the shortest
path

* Even if it finds the shortest path, it might require an unreasonable
amount of computation

Desirable properties of a search algorithm

* Complete: If there is a finite-length path to the goal, the algorithm
finds it in a finite amount of time

 Admissible: If there is a path, it finds the shortest path
* Shortest path = smallest path cost (e.g., miles traveled)

e Optimal: If there is a path, it uses the least possible amount of

computation to find the path
* Computation = number of states on which the neighborhood function, I'(n),
must be evaluated.

Depth-first search (DFS) has none of these properties.

Outline

* Breadth-first search (BFS)
* Uniform-cost search (UCS)

Depth of a search

* Suppose that reaching our goal requires passing through d nodes
* We call d the depth of the path
 How can we guarantee that we find a path of depth d, if it exists?

e Answer: try every path of length d before we try any paths of length
d+1

Breadth-tirst search
Try every path of depth 0 before you try any path of depth 1.

mmet ‘

rChampalgnf StJoseph=
. oseph-

B

St. Joseph Mahomet

Breadth-first search
Try every path of depth 1 before you try any path of depth 2.

Mahomet

===Champaign—
\: [
—_ } 'l Sa}:}oy ‘
=CGhampaign==st-Joseph-— —Oakwood "~ l’:'
“ ' }\ﬁ W “T oﬁono

Breadth-first search
Try every path of depth 2 before you try any path of depth 3.

—_— —. I
"Mahomet

_’_le tJoseph
A T——StJoseph=
= 3

Sayoy I —_
: 7Champalgn":

/ / J — ‘ Sa},/oy ‘

J 'I (/‘/ﬁ,,- C = \‘""A("’fa:{\r:?{>¢ :] “Tol’:ﬁ'o -
2 / “ | J |

=Champaigh—=stJoseph~— Oakwood A—{ Sayoy
“ =~ I W |
| | ToIono

| A
fStf:Jo'seph—r —L——Oa_lgwood%f;/!l”esﬁs

Villa (‘rove

Tuscolai

Tuscola Villa Grove

Analysis of breadth-first search

* Complete? Yes
* If the goal can be reached in a path of depth d, BFS will find it at a depth of d

* Admissible? Only if all steps have the same cost
* If each step has a cost of 1, then the best path has a cost of d, and BFS finds it
* If different steps have different costs, then BFS may not find the shortest

* Optimal? No
* There are other algorithms that require less computation

Computational complexity of BFS and DFS

* Parameters
* b = Branching factor (largest number of neighbors any node can have)
* d = Depth of the best path to goal
 m = Depth of the longest path to any state (may be infinite)

* Time complexity: (# evaluations of I'(n))
* BFS: Time complexity = O{b%}
* DFS: Time complexity = 0{b™}
* Space complexity: (# nodes that must be stored during search)
* BFS: Space complexity = 0{b%}
* DFS: Space complexity = O{bm}

Completeness of BFS (animation)

«h=28

e d =28

* m = not shown (infinite?)
* Time complexity:

* BFS: Time complexity = O{b%}

* DFS: Time complexity = O{b™}
* Space complexity:

* BFS: Space complexity = O{b%}

* DFS: Space complexity = O{bm}

Dijkstra’s progress, CC-BY 3.0, Subh83, 2011
https://commons.wikimedia.org/wiki/File:Dijkstras progress animation.gif

https://commons.wikimedia.org/wiki/File:Dijkstras_progress_animation.gif

BFS search order S,
(animation)

eh=2 (o) (e)
«d=3 —
*m=3

* Time complexity: L N -
* BFS: Time complexity = 0{b%} 4) Le) U0) L g

* DFS: Time complexity = 0{b™}

» Space complexity: o
* BFS: Space complexity = 0{b%} Cn)
* DFS: Space complexity = O{bm} : ‘

Animated-BFS. CC-SA 3.0, Blake Matheny, 2007
https://commons.wikimedia.org/wiki/File:Animated_BFS.gif

https://commons.wikimedia.org/wiki/File:Animated_BFS.gif

DFS search order (animation)

*bhb=3
*d=3
em=23

* Time complexity:
* BFS: Time complexity = O{b%}
* DFS: Time complexity = 0{b™}

* Space complexity: O Q
* BFS: Space complexity = O{b%}

* DFS: Space complexity = O{bm}

Depth-first-search. CC-BY-SA 3.0, Mre, 2009
https://commons.wikimedia.org/wiki/File:Depth-First-Search.gif

https://commons.wikimedia.org/wiki/File:Depth-First-Search.gif

Outline

* Uniform-cost search (UCS)

What about cost?

« Remember that not all edges have
the same cost

* How can we guarantee that a
search returns the path with the
minimum total cost?

Mahomet

Champaign

Tuscola

Uniform Cost Search

* Keep track of g(n) = the cost of
the shortest path from the start
node to n

* The next node to expand = the
node with the smallest cost

Mahomet:
12

Champaign:
0

Tuscola:
23

Uniform Cost Search

* Keep track of g(n) = the cost of
the shortest path from the start
node to n

* The next node to expand = the
node with the smallest cost

Mahomet:
12

Champaign:
0

Tuscola:
23

Uniform Cost Search

* Keep track of g(n) = the cost of
the shortest path from the start
node to n

* The next node to expand = the
node with the smallest cost

Mahomet:
12

Champaign:
0

Tuscola:
23

Tuscola:
22

Champaign:

Uniform Cost Search

* If you find a shorter path to a node Mahomet:
you are waiting to explore (we say i
this node is in your "frontier”),
keep only the shortest path

* If you find a shorter path to a node
you have already explored, put S
that node back on your frontier 22

Champaign:
0

Uniform Cost Search

* Keep track of g(n) = the cost of Mahomet:
12

the shortest path from the start
node to n

Farmer

* The next node to expand = the Fisher:23 City: 27
node with the smallest cost

Tuscola:
22

* Comment: also known as Dijsktra’s
algorithm

Arcola:

 Comment: if each step has the 31
same cost, then UCS = BFS

Try the quiz

Try the quiz!

https://us.prairielearn.com/pl/course instance/147925/assessment/24
02978

https://us.prairielearn.com/pl/course_instance/147925/assessment/2402978
https://us.prairielearn.com/pl/course_instance/147925/assessment/2402978

Analysis of uniform-cost search

e Complete? Yes

* If the goal can be reached with a total cost of g* = minscs g(t), UCS will find
a path with a cost of g*

* Admissible? Yes
* If the shortest total path cost is g*, then UCS will find it

e Optimal? No
* There are other algorithms that require less computation

 Time Complexity= # nodes with g(n) < g*

* Space Complexity= # nodes with g(n) < g*

Search order of
UCS (animation)

https://en.wikipedia.org/wiki/Dijkstra%?27s algorithm#/media/File:Dijkstra Animation.gif

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Conclusions

* Depth-first search (DFS)
* incomplete, inadmissible, non-optimal
* Time complexity = O{bm}, Space complexity = O{b™}
* Breadth-first search (BFS)
* complete, inadmissible (unless each edge has cost 1), non-optimal
* Time complexity = Space complexity = 0{b?}
* Uniform-cost search (UCS)
* complete, admissible, non-optimal
* Time complexity = Space complexity = # nodes with g(n) < g°

