
Lecture 18:
Search

Mark Hasegawa-Johnson
Lecture slides CC0

By Claudio Oliveira Lim…, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=46626573

https://commons.wikimedia.org/w/index.php?curid=46626573

Outline

• Search Problems: start, goal, neighborhood
• Depth-first search (DFS): completeness, admissibility, & optimality
• Breadth-first search (BFS)
• Uniform-cost search (UCS)

Agents and their environments

N
aï

ve
 B

ay
es

H
M

M

N
eu

ra
l N

et

Se
ar

ch

Ite
ra

te
d

G
am

es

Re
in

fo
rc

em
en

t
Le

ar
ni

ng

Stochastic Transitions (vs. Deterministic) X X X X

Partially Observable State (vs. Fully) X X X

Continuous State (vs. Discrete) X X

Unknown Rules (vs. Known) X X

Sequential (vs. Episodic) X X X

Multi-Agent (vs. Single) X X

Dynamic (vs. Static)

Search problems

A search problem is defined by:
• A (possibly infinite) set of states or nodes, 𝑛 ∈ 𝒩

• The agent must start in a “start state” 𝑠.
• The agent must reach any “goal state” 𝑡 ∈ 𝒯, where 𝒯 ⊂ 𝒩.

• A set of transitions
• Γ(𝑛) 	= the set of states that are neighbors of 𝑛.
• ℎ(𝑚, 𝑛) 	= cost of the shortest path from 𝑚 to 𝑛, ℎ(𝑚, 𝑛) > 0.

Example: Road Trip
We’re in Champaign-Urbana. We want to plan a road trip to see New
York and Washington, D.C.
• 𝒩 = set of all towns and cities in the United States
• 𝑠	 = {𝑛 ∶ 	𝑛. loc = Urbana, 𝑛. NY = False, 𝑛. DC = False}
• 𝒯 = {𝑛 ∶ 	𝑛. NY = True, 𝑛. DC = True}
• Γ(𝑛) 	= set of cities reachable from 𝑛.loc

• If m.loc=NY for any m ∈ Γ(𝑛), set m.NY=True
• If m.loc=DC for any m ∈ Γ(𝑛), set m.DC=True
• Otherwise, m.NY=n.NY and m.DC=n.DC

• ℎ(𝑚, 𝑛) 	= distance, in miles, from 𝑚.loc to 𝑛.loc

Neighborhood
• The neighborhood function, Γ(𝑛),

finds the neighbors of a node
• It also gives you the distance
ℎ(𝑛,𝑚)	from 𝑛 to each neighbor

Champaign

MahometRantoulSt. Joseph Savoy

16 1211

Monticello

23

Tuscola

4
22

Solution strategies

• Random walk: Just start driving
• Advantages: No thinking required
• Disadvantages: We might never get there

• Planned walk: Explore every possible path, and choose the shortest
• Advantages: Reach goal, Spend the least possible amount of gas
• Disadvantages: Lots of computation

Search algorithms compute a path to the goal (possibly the shortest) by
describing many partial paths (description = list of states on each path).

Outline

• Search Problems: start, goal, neighborhood
• Depth-first search (DFS): completeness, admissibility, & optimality
• Breadth-first search (BFS)
• Uniform-cost search (UCS)

Depth-first search

• Depth-first search is sort of like a random walk, but in software, not in
real life
• Advantage: if the random walk doesn’t reach the goal, then we have

only spent electricity, not gas

Depth-first search

• Choose, at random, 𝑛! =one of
the neighbors of 𝑠

St. Joe Mahomet Savoy

Depth-first search

• Choose, at random, 𝑛! =one of
the neighbors of 𝑠
• Choose, at random, 𝑛" =	one

of the neighbors of 𝑛!.
• Make sure not to choose a state

you’ve already explored

Mahomet Savoy

Oakwood

Depth-first search

• Choose, at random, 𝑛! =one of
the neighbors of 𝑠
• Choose, at random, 𝑛" =	one

of the neighbors of 𝑛!.
• Make sure not to choose a state

you’ve already explored

• Repeat

Mahomet Savoy

Danville

Depth-first search

• Choose, at random, 𝑛! =one of
the neighbors of 𝑠
• Choose, at random, 𝑛" =	one

of the neighbors of 𝑛!.
• Make sure not to choose a state

you’ve already explored

• Repeat
• Repeat

Mahomet Savoy

Problems with depth-first search

• It might run forever, without ever finding a path to the goal
• If it finds a path to the goal, there’s no guarantee it finds the shortest

path
• Even if it finds the shortest path, it might require an unreasonable

amount of computation

Desirable properties of a search algorithm

• Complete: If there is a finite-length path to the goal, the algorithm
finds it in a finite amount of time
• Admissible: If there is a path, it finds the shortest path

• Shortest path = smallest path cost (e.g., miles traveled)
• Optimal: If there is a path, it uses the least possible amount of

computation to find the path
• Computation = number of states on which the neighborhood function, Γ(𝑛),

must be evaluated.

Depth-first search (DFS) has none of these properties.

Outline

• Search Problems: start, goal, neighborhood
• Depth-first search (DFS): completeness, admissibility, & optimality
• Breadth-first search (BFS)
• Uniform-cost search (UCS)

Depth of a search

• Suppose that reaching our goal requires passing through 𝑑 nodes
• We call 𝑑 the depth of the path
• How can we guarantee that we find a path of depth 𝑑, if it exists?
• Answer: try every path of length 𝑑 before we try any paths of length
𝑑 + 1

Breadth-first search
Try every path of depth 0 before you try any path of depth 1.

Mahomet SavoySt. Joseph

Breadth-first search
Try every path of depth 1 before you try any path of depth 2.

Oakwood Farmer
City

TolonoFisher

Breadth-first search
Try every path of depth 2 before you try any path of depth 3.

Le Roy TuscolaRantoul

Danville

Villa Grove

Analysis of breadth-first search

• Complete? Yes
• If the goal can be reached in a path of depth 𝑑, BFS will find it at a depth of 𝑑

• Admissible? Only if all steps have the same cost
• If each step has a cost of 1, then the best path has a cost of 𝑑, and BFS finds it
• If different steps have different costs, then BFS may not find the shortest

• Optimal? No
• There are other algorithms that require less computation

Computational complexity of BFS and DFS

• Parameters
• 𝑏 = Branching factor (largest number of neighbors any node can have)
• 𝑑 = Depth of the best path to goal
• 𝑚 = Depth of the longest path to any state (may be infinite)

• Time complexity: (# evaluations of Γ(𝑛))
• BFS: Time complexity = 𝒪 𝑏!

• DFS: Time complexity = 𝒪 𝑏"

• Space complexity: (# nodes that must be stored during search)
• BFS: Space complexity = 𝒪 𝑏!

• DFS: Space complexity = 𝒪 𝑏𝑚

Dijkstra’s progress, CC-BY 3.0, Subh83, 2011
https://commons.wikimedia.org/wiki/File:Dijkstras_progress_animation.gif

Completeness of BFS (animation)

• 𝑏 = 8
• 𝑑 = 28
• 𝑚 = not shown (infinite?)

• Time complexity:
• BFS: Time complexity = 𝒪 𝑏!

• DFS: Time complexity = 𝒪 𝑏"

• Space complexity:
• BFS: Space complexity = 𝒪 𝑏!
• DFS: Space complexity = 𝒪 𝑏𝑚

https://commons.wikimedia.org/wiki/File:Dijkstras_progress_animation.gif

Animated-BFS. CC-SA 3.0, Blake Matheny, 2007
https://commons.wikimedia.org/wiki/File:Animated_BFS.gif

BFS search order
(animation)

• 𝑏 = 2
• 𝑑 = 3
• 𝑚 = 3

• Time complexity:
• BFS: Time complexity = 𝒪 𝑏!

• DFS: Time complexity = 𝒪 𝑏"

• Space complexity:
• BFS: Space complexity = 𝒪 𝑏!
• DFS: Space complexity = 𝒪 𝑏𝑚

https://commons.wikimedia.org/wiki/File:Animated_BFS.gif

Depth-first-search. CC-BY-SA 3.0, Mre, 2009
https://commons.wikimedia.org/wiki/File:Depth-First-Search.gif

DFS search order (animation)

• 𝑏 = 3
• 𝑑 = 3
• 𝑚 = 3

• Time complexity:
• BFS: Time complexity = 𝒪 𝑏!

• DFS: Time complexity = 𝒪 𝑏"

• Space complexity:
• BFS: Space complexity = 𝒪 𝑏!
• DFS: Space complexity = 𝒪 𝑏𝑚

https://commons.wikimedia.org/wiki/File:Depth-First-Search.gif

Outline

• Search Problems: start, goal, neighborhood
• Depth-first search (DFS): completeness, admissibility, & optimality
• Breadth-first search (BFS)
• Uniform-cost search (UCS)

What about cost?

• Remember that not all edges have
the same cost
• How can we guarantee that a

search returns the path with the
minimum total cost?

Champaign

Mahomet Savoy

12 23

Tuscola

4

Uniform Cost Search

• Keep track of 𝑔(𝑛) = the cost of
the shortest path from the start
node to n
• The next node to expand = the

node with the smallest cost

Champaign:
0

Mahomet:
12

Savoy: 4

12 23

Tuscola:
23

4

Uniform Cost Search

• Keep track of 𝑔(𝑛) = the cost of
the shortest path from the start
node to n
• The next node to expand = the

node with the smallest cost

Champaign:
0

Mahomet:
12

Savoy: 4

12 23

Tuscola:
23

4

Tolono: 10

6

Uniform Cost Search

• Keep track of 𝑔(𝑛) = the cost of
the shortest path from the start
node to n
• The next node to expand = the

node with the smallest cost

Champaign:
0

Mahomet:
12

Savoy: 4

12 23

Tuscola:
23

4

Tolono: 10

6

Tuscola:
22

12

Uniform Cost Search

• If you find a shorter path to a node
you are waiting to explore (we say
this node is in your ”frontier”),
keep only the shortest path
• If you find a shorter path to a node

you have already explored, put
that node back on your frontier

Champaign:
0

Mahomet:
12

Savoy: 4

12 23

Tuscola:
23

4

Tolono: 10

6

Tuscola:
22

12

X

Uniform Cost Search

• Keep track of 𝑔(𝑛) = the cost of
the shortest path from the start
node to n
• The next node to expand = the

node with the smallest cost

• Comment: also known as Dijsktra’s
algorithm
• Comment: if each step has the

same cost, then UCS = BFS

Champaign:
0

Mahomet:
12

Savoy: 4

12

11

4

Tolono: 10

6

Tuscola:
22

31

Fisher:23
Farmer
City: 27

15

Arcola:
31

Try the quiz

Try the quiz!
https://us.prairielearn.com/pl/course_instance/147925/assessment/24
02978

https://us.prairielearn.com/pl/course_instance/147925/assessment/2402978
https://us.prairielearn.com/pl/course_instance/147925/assessment/2402978

Analysis of uniform-cost search

• Complete? Yes
• If the goal can be reached with a total cost of 𝑔∗ = min$∈𝒯 𝑔(𝑡), UCS will find

a path with a cost of 𝑔∗

• Admissible? Yes
• If the shortest total path cost is 𝑔∗, then UCS will find it

• Optimal? No
• There are other algorithms that require less computation

• Time Complexity= # nodes with 𝑔(𝑛) ≤ 𝑔∗

• Space Complexity= # nodes with 𝑔(𝑛) ≤ 𝑔∗

Search order of
UCS (animation)

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstra_Animation.gif

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Conclusions

• Depth-first search (DFS)
• incomplete, inadmissible, non-optimal
• Time complexity = 𝒪 𝑏𝑚 , Space complexity = 𝒪 𝑏"

• Breadth-first search (BFS)
• complete, inadmissible (unless each edge has cost 1), non-optimal
• Time complexity = Space complexity = 𝒪 𝑏!

• Uniform-cost search (UCS)
• complete, admissible, non-optimal
• Time complexity = Space complexity = # nodes with 𝑔(𝑛) ≤ 𝑔∗

