
CS440/ECE448
Lecture 15

Computer Vision:
Convolutional

Networks
Mark Hasegawa-Johnson, 2/2024
Slides are in Public Domain: Re-Mix,
Re-Use, Re-Distribute at will

𝑖

𝑗𝑗

𝑥 𝑖, 𝑗

𝑖

𝑗
ℎ 𝑖, 𝑗 =

Computer Vision: Object Recognition
• Review: Neural Networks
• Object recognition: the problem of shift-invariance
• Correlation = local similarity judgements
• Convolution = Correlation that has been flipped upside down

and backward
• Back-propagation through convolution
• Object detection: Max Pooling & Vectorization
• Back-propagation through max pooling
• Real-World CNNs

Remember: a neural network learns a PWL
approximation of a nonlinear function

• We can approximate any
nonlinear classifier using a PWL
classifier
• In the limit, as the number of

hidden nodes goes to infinity,
the approximation becomes
provably perfect

Public domain image, Krishnavedala, 2011

The first layer is a matrix followed by a nonlinearity.
The second layer is a linear classifier.

𝑓!

𝑥! 𝑥" 𝑥#$"
1

…

𝑓" 𝑓%$"

1ℎ! ℎ" ℎ&$"
𝑤!,!,! 𝑏!,&$"

𝑏",%$"𝑤",!,!
…

…
𝑓 = softmax(𝑤!@ℎ + 𝑏!)	

ℎ = 𝑅𝑒𝐿𝑈 𝑤"@𝑥 + 𝑏"

Computer Vision: Object Recognition
• Review: Neural Networks
• Object recognition: the problem of shift-invariance
• Correlation = local similarity judgements
• Convolution = Correlation that has been flipped upside down

and backward
• Back-propagation through convolution
• Object detection: Max Pooling & Vectorization
• Back-propagation through max pooling
• Real-World CNNs

The problem of shift invariance
• These two images each contain a cat.
• How can a neural network tell?

Fully-connected network
A fully-connected network converts the image into a
vector, then multiplies it by a matrix.

Fully-connected network
A fully-connected network converts the image into a
vector, then multiplies it by a matrix.

𝑓!

1

𝑓" 𝑓%$"

1ℎ! ℎ" ℎ&$"
𝑤!,!,! 𝑏!,&$"

𝑏",%$"𝑤",!,!
…

…

The problem of shift invariance
…is that, even though both images contain a cat, the vectorized
versions of these two images are dissimilar.

VECTORIZE

VECTORIZE

≉

The first layer is a matrix followed by a nonlinearity.
The second layer is a linear classifier.

𝑓!

𝑥! 𝑥" 𝑥#$"
1

…

𝑓" 𝑓%$"

1ℎ! ℎ" ℎ&$"
𝑤!,!,! 𝑏!,&$"

𝑏",%$"𝑤",!,!
…

…
• Since the vectors aren’t similar,

they won’t produce similar
hidden features.
• Since the hidden features aren’t

similar, they won’t be recognized
as the same animal.

Computer Vision: Object Recognition
• Review: Neural Networks
• Object recognition: the problem of shift-invariance
• Correlation = local similarity judgements
• Convolution = Correlation that has been flipped upside down

and backward
• Back-propagation through convolution
• Object detection: Max Pooling & Vectorization
• Back-propagation through max pooling
• Real-World CNNs

The key idea of a convolutional neural
network: local similarity judgments

• The key idea of a convolutional
neural network is that we perform
the similarity judgments locally, in
every patch of the image.
• If any patch of the image resembles

the target image, we score a
recognition

Similarity as a
function of row
and column
indices

The key idea of a convolutional neural
network: local similarity judgments

• The key idea of a convolutional
neural network is that we perform
the similarity judgments locally, in
every patch of the image.
• If any patch of the image resembles

the target image, we score a
recognition

Similarity as a
function of row
and column
indices

The key idea of a convolutional neural
network: local similarity judgments

• The key idea of a convolutional
neural network is that we perform
the similarity judgments locally, in
every patch of the image.
• If any patch of the image resembles

the target image, we score a
recognition

Similarity as a
function of row
and column
indices

The key idea of a convolutional neural
network: local similarity judgments

• The key idea of a convolutional
neural network is that we perform
the similarity judgments locally, in
every patch of the image.
• If any patch of the image resembles

the target image, we score a
recognition

Similarity as a
function of row
and column
indices

The key idea of a convolutional neural
network: local similarity judgments

• The key idea of a convolutional
neural network is that we perform
the similarity judgments locally, in
every patch of the image.
• If any patch of the image resembles

the target image, we score a
recognition

Similarity as a
function of row
and column
indices

The key idea of a convolutional neural
network: local similarity judgments

• The key idea of a convolutional
neural network is that we perform
the similarity judgments locally, in
every patch of the image.
• If any patch of the image resembles

the target image, we score a
recognition

Similarity as a
function of row
and column
indices

The key idea of a convolutional neural
network: local similarity judgments

• The key idea of a convolutional
neural network is that we perform
the similarity judgments locally, in
every patch of the image.
• If any patch of the image resembles

the target image, we score a
recognition

Similarity as a
function of row
and column
indices

The key idea of a convolutional neural
network: local similarity judgments

• The key idea of a convolutional
neural network is that we perform
the similarity judgments locally, in
every patch of the image.
• If any patch of the image resembles

the target image, we score a
recognition

Similarity as a
function of row
and column
indices

The key idea of a convolutional neural
network: local similarity judgments

• The key idea of a convolutional
neural network is that we perform
the similarity judgments locally, in
every patch of the image.
• If any patch of the image resembles

the target image, we score a
recognition

Similarity as a
function of row
and column
indices

The key idea of a convolutional neural
network: local similarity judgments

• The key idea of a convolutional
neural network is that we perform
the similarity judgments locally, in
every patch of the image.
• If any patch of the image resembles

the target image, we score a
recognition

Similarity as a
function of row
and column
indices

The key idea of a convolutional neural
network: local similarity judgments

• The key idea of a convolutional
neural network is that we perform
the similarity judgments locally, in
every patch of the image.
• If any patch of the image resembles

the target image, we score a
recognition

Similarity as a
function of row
and column
indices

How do we measure similarity? …. The math.

• Input image = 𝑥 𝑖, 𝑗

• Filter (pattern being
detected) = ℎ[𝑖, 𝑗]

•Output image (grid of
local detection
strengths) = 𝑦 𝑘, 𝑙

𝑖

𝑗

𝑗

𝑖

𝑙

𝑘

How do we measure similarity?
Answer: local dot product = correlation

!
!

!
"

ℎ[𝑖, 𝑗]𝑥 𝑖, 𝑗

= 𝑦 0,0

𝑖

𝑗 𝑙

𝑘

How do we measure similarity?
Answer: local dot product = correlation

!
!

!
"

ℎ[𝑖 − 𝑘, 𝑗 − 𝑙]𝑥 𝑖, 𝑗

= 𝑦 𝑘, 𝑙

𝑖

𝑗 𝑙

𝑘

Computer Vision: Object Recognition
• Review: Neural Networks
• Object recognition: the problem of shift-invariance
• Correlation = local similarity judgements
• Convolution = Correlation that has been flipped upside down

and backward
• Back-propagation through convolution
• Object detection: Max Pooling & Vectorization
• Back-propagation through max pooling
• Real-World CNNs

Correlation versus Convolution

• This formula is called the correlation of ℎ[𝑖, 𝑗] with 𝑥 𝑖, 𝑗 :

𝑦 𝑘, 𝑙 = ,
!

,
"

ℎ[𝑖 − 𝑘, 𝑗 − 𝑙]𝑥 𝑖, 𝑗

• This formula is called the convolution of ℎ[𝑖, 𝑗] with 𝑥 𝑖, 𝑗 :

𝑦 𝑘, 𝑙 = ,
!

,
"

ℎ[𝑘 − 𝑖, 𝑙 − 𝑗]𝑥 𝑖, 𝑗

Why use convolution if correlation is easier to
visualize?

• Historical reason: Convolution is related to Fourier transform

• Computational reason? Not really, they have exactly the same
computational complexity

• The only reason that is kind of useful: convolution, unlike correlation,
is symmetric:

𝑦 𝑘, 𝑙 = ,
!

,
"

ℎ[𝑘 − 𝑖, 𝑙 − 𝑗]𝑥 𝑖, 𝑗 = ,
!

,
"

ℎ[𝑖, 𝑗]𝑥 𝑘 − 𝑖, 𝑙 − 𝑗

Convolutional neural net

A convolutional neural net is the
same thing as a correlational
neural net, except that the filter
is defined upside down and
backward, like this.

𝑖

𝑗 𝑙

𝑘

𝑖

𝑗
ℎ 𝑖, 𝑗 =

Convolutional neural net

The convolution operation then
• Flips the filter rightside up,
• Shifts it to ℎ[𝑘 − 𝑖, 𝑙 − 𝑗]
• Computes the similarity:

𝑦 𝑘, 𝑙 = !
!

!
"

ℎ[𝑘 − 𝑖, 𝑙 − 𝑗]𝑥 𝑖, 𝑗

𝑖

𝑗 𝑙

𝑘

𝑗

ℎ −𝑖, −𝑗 =

𝑖

𝑗

Convolutional neural net

𝑦 𝑘, 𝑙
=?

#

?
$

ℎ[𝑘 − 𝑖, 𝑙 − 𝑗]𝑥 𝑖, 𝑗

This is often written as
𝑦 𝑘, 𝑙 = ℎ 𝑘, 𝑙 ∗ 𝑥 𝑘, 𝑙

𝑖

𝑗 𝑙

𝑘

𝑗𝑖

𝑗
ℎ 𝑖, 𝑗 =

Quiz

• Try the quiz!
https://us.prairielearn.com/pl/course_instance/147925/assessment/
2400008

https://us.prairielearn.com/pl/course_instance/147925/assessment/2400008
https://us.prairielearn.com/pl/course_instance/147925/assessment/2400008

Computer Vision: Object Recognition
• Review: Neural Networks
• Object recognition: the problem of shift-invariance
• Correlation = local similarity judgements
• Convolution = Correlation that has been flipped upside down

and backward
• Back-propagation through convolution
• Object detection: Max Pooling & Vectorization
• Back-propagation through max pooling
• Real-World CNNs

Back-prop through convolution

• Suppose we’ve computed 𝑦 𝑘, 𝑙 = ∑!∑" ℎ[𝑖, 𝑗]𝑥 𝑘 − 𝑖, 𝑙 − 𝑗

• Now suppose we know #ℒ
#%[',)]

• We want to train ℎ[𝑖, 𝑗] = ℎ[𝑖, 𝑗] − 𝜂 #ℒ
#+[!,"]

• How do we find #ℒ
#+[!,"]

?

Back-prop through convolution

Answer: use the chain rule!

𝑦 𝑘, 𝑙 = ∑!∑" ℎ[𝑖, 𝑗]𝑥 𝑘 − 𝑖, 𝑙 − 𝑗 , so…

𝑑ℒ
𝑑ℎ[𝑖, 𝑗]

= ,
'

,
)

𝑑ℒ
𝑑𝑦[𝑘, 𝑙]

𝑑𝑦[𝑘, 𝑙]
𝑑ℎ[𝑖, 𝑗]

= ,
'

,
)

𝑑ℒ
𝑑𝑦[𝑘, 𝑙]

𝑥[𝑘 − 𝑖, 𝑙 − 𝑗]

Computer Vision: Object Recognition
• Review: Neural Networks
• Object recognition: the problem of shift-invariance
• Correlation = local similarity judgements
• Convolution = Correlation that has been flipped upside down

and backward
• Back-propagation through convolution
• Object detection: Max Pooling & Vectorization
• Back-propagation through max pooling
• Real-World CNNs

Too much information

𝑖

𝑗 𝑙

𝑘

𝑗

• Convolution gives large output at the
cat’s location

• … but the output, 𝑦 𝑘, 𝑙 , is the same
(huge) size as the input image!

• How can we check to see if there is a
cat somewhere in the image?

Convolution

𝑥 𝑖, 𝑗

𝑦 𝑘, 𝑙

Max Pooling

𝑖

𝑗
𝑙

𝑘

𝑗

•Max pooling finds the maximum of 𝑦[𝑘, 𝑙]
over some range of input pixels…
•…so we know whether or not the cat was

in that region of the image.

Conv

𝑥 𝑖, 𝑗

𝑦 𝑘, 𝑙

𝑛

𝑚

𝑧 𝑚, 𝑛

Max pooling

Max Pooling

𝑖

𝑗
𝑙

𝑘

𝑗

𝑧 𝑚, 𝑛 = max
#$% &'%()(#&,
+$% &'%(,(+&

𝑦 𝑘, 𝑙

… where 𝑝 is the “pooling.” In this example,
𝑝 = 2 pixels, which is typical.

Conv

𝑥 𝑖, 𝑗

𝑦 𝑘, 𝑙

Max pooling 𝑛

𝑚

𝑧 𝑚, 𝑛

Max Pooling

𝑖

𝑗
𝑙

𝑘

𝑗

𝑧 𝑚, 𝑛 = max
#$% &'%()(#&,
+$% &'%(,(+&

𝑦 𝑘, 𝑙

… where 𝑝 is the “pooling.” In this example,
𝑝 = 2 pixels, which is typical.

Conv

𝑥 𝑖, 𝑗

𝑦 𝑘, 𝑙

𝑛

𝑚

𝑧 𝑚, 𝑛
Max pooling

Max Pooling

𝑖

𝑗
𝑙

𝑘

𝑗

𝑧 𝑚, 𝑛 = max
#$% &'%()(#&,
+$% &'%(,(+&

𝑦 𝑘, 𝑙

… where 𝑝 is the “pooling.” In this example,
𝑝 = 2 pixels, which is typical.

Conv
with
DS

𝑥 𝑖, 𝑗

𝑦 𝑘, 𝑙

𝑛

𝑚

𝑧 𝑚, 𝑛

Max pooling

Max Pooling

𝑖

𝑗
𝑙

𝑘

𝑗

𝑧 𝑚, 𝑛 = max
#$% &'%()(#&,
+$% &'%(,(+&

𝑦 𝑘, 𝑙

… where 𝑝 is the “pooling.” In this example,
𝑝 = 2 pixels, which is typical.

Conv

𝑥 𝑖, 𝑗

𝑦 𝑘, 𝑙

𝑛

𝑚

𝑧 𝑚, 𝑛

Max pooling

Object detection: convolution, max pooling,
vectorize, then use a linear classifier
• Convolution detects an object, no matter where it is,
• Max pooling keeps the best detection of the object in each region,
• Linear classifier tests if the best detection is good enough.

𝑖

Conv𝑥 𝑖, 𝑗

𝑦 𝑘, 𝑙

𝑧 𝑚, 𝑛
Max
pool

vectorize

𝑓! 𝑓" 𝑓%$"

𝑏𝑤",!,!
1

Computer Vision: Object Recognition
• Review: Neural Networks
• Object recognition: the problem of shift-invariance
• Correlation = local similarity judgements
• Convolution = Correlation that has been flipped upside down

and backward
• Back-propagation through convolution
• Object detection: Max Pooling & Vectorization
• Back-propagation through convolution
• Real-World CNNs

Back-prop through max-pooling

• Suppose we’ve computed 𝑧 𝑚, 𝑛 = max
,-. /0.1'1,/,
2-. /0.1)12/

𝑦 𝑘, 𝑙

• Now suppose we know #ℒ
#3[,,2]

• In order to train the neural net, we need #ℒ
#%[',)]

• How do we find #ℒ
#%[',)]

?

Back-prop through max-pooling

Answer: use the chain rule!
𝑧 𝑚, 𝑛 = max

!"# $%#&'&!$,
)"# $%#&*&)$

𝑦 𝑘, 𝑙 , so…

𝑑ℒ
𝑑𝑦[𝑘, 𝑙] =

𝑑ℒ
𝑑𝑧[𝑚, 𝑛]

𝑑𝑧[𝑚, 𝑛]
𝑑𝑦[𝑘, 𝑙]

=
𝑑ℒ

𝑑𝑧[𝑚, 𝑛] if	𝑦 𝑘, 𝑙 = max
!"# $%#&+&!$,
)"# $%#&,&)$

𝑦 𝑖, 𝑗

0 otherwise

Back-prop through max-pooling

𝑙

𝑘

In every 2x2 block of 𝑦[𝑘, 𝑙], only one pixel has nonzero Aℒ
AB[C,D]

All the other pixels have zero gradient.

𝑦 𝑘, 𝑙

𝑛

𝑚

𝑧 𝑚, 𝑛 𝑑ℒ
𝑑𝑦[𝑘, 𝑙]

=

𝑑ℒ
𝑑𝑧[𝑚, 𝑛]

if	𝑦 𝑘, 𝑙 = max
,-. /0.1!1,/,
2-. /0.1"12/

𝑦 𝑖, 𝑗

0 otherwise

Computer Vision: Object Recognition
• Review: Neural Networks
• Object recognition: the problem of shift-invariance
• Correlation = local similarity judgements
• Convolution = Correlation that has been flipped upside down

and backward
• Back-propagation through convolution
• Object detection: Max Pooling & Vectorization
• Back-propagation through convolution
• Real-World CNNs

LeNet, 1998
• (Convolution, Nonlinearity, Max-pooling, Normalization) X 2 layers
• After the second subsampling, the resulting features are concatenated to

form a vector, which is then classified.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition,
Proc. IEEE 86(11): 2278–2324, 1998.

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

AlexNet
• Similar framework to LeNet but:

• Bigger model (7 hidden layers, 650,000 units, 60,000,000 params)
• More data (106 vs. 103 images)
• GPU implementation (50x speedup over CPU)

• Trained on two GPUs for a week

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional
Neural Networks, NIPS 2012

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

ImageNet Challenge

Validation classification

Validation classification

Validation classification

[Deng et al. CVPR 2009]

• ~14 million labeled images, 20k classes

• Images gathered from Internet

• Human labels via Amazon MTurk

• Challenge: 1.2 million training images,
1000 classes

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional
Neural Networks, NIPS 2012

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

Layer 1 Filters

M. Zeiler and R. Fergus, Visualizing and Understanding Convolutional Networks,
arXiv preprint, 2013

http://arxiv.org/pdf/1311.2901v3.pdf

Layer 1: Top-9 Patches

Layer 2: Top-9 Patches

• Patches from validation images that give maximal activation of a given feature map

Layer 3: Top-9 Patches
Layer 3: Top-9 Patches

Layer 4: Top-9 Patches

Layer 5: Top-9 Patches

Conclusion: Convolution and Max Pooling

𝑦 𝑘, 𝑙 = ℎ[𝑘, 𝑙] ∗ 𝑥 𝑘, 𝑙 =+
+

+
,

ℎ[𝑘 − 𝑖, 𝑙 − 𝑗]𝑥 𝑖, 𝑗

𝑑ℒ
𝑑ℎ[𝑖, 𝑗]

=+
'

+
*

𝑑ℒ
𝑑𝑦[𝑘, 𝑙]

𝑑𝑦[𝑘, 𝑙]
𝑑ℎ[𝑖, 𝑗]

𝑧 𝑚, 𝑛 = max
!"# $%#&'&!$,
)"# $%#&*&)$

𝑦 𝑘, 𝑙

𝑑ℒ
𝑑𝑦[𝑘, 𝑙] =

𝑑ℒ
𝑑𝑧[𝑚, 𝑛]

if	𝑦 𝑘, 𝑙 = max
!"# $%#&+&!$,
)"# $%#&,&)$

𝑦 𝑖, 𝑗

0 otherwise

