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Computer Vision: Object Recognition
• Review: Neural Networks
• Object recognition: the problem of shift-invariance
• Correlation = local similarity judgements
• Convolution = Correlation that has been flipped upside down 

and backward
• Back-propagation through convolution
• Object detection: Max Pooling & Vectorization
• Back-propagation through max pooling
• Real-World CNNs



Remember: a neural network learns a PWL 
approximation of a nonlinear function 

• We can approximate any 
nonlinear classifier using a PWL 
classifier
• In the limit, as the number of 

hidden nodes goes to infinity, 
the approximation becomes 
provably perfect

Public domain image, Krishnavedala, 2011



The first layer is a matrix followed by a nonlinearity.
The second layer is a linear classifier.
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The problem of shift invariance
• These two images each contain a cat.
• How can a neural network tell?



Fully-connected network
A fully-connected network converts the image into a 
vector, then multiplies it by a matrix.



Fully-connected network
A fully-connected network converts the image into a 
vector, then multiplies it by a matrix.
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The problem of shift invariance
…is that, even though both images contain a cat, the vectorized 
versions of these two images are dissimilar.

VECTORIZE

VECTORIZE

≉



The first layer is a matrix followed by a nonlinearity.
The second layer is a linear classifier.
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• Since the vectors aren’t similar, 

they won’t produce similar 
hidden features.
• Since the hidden features aren’t 

similar, they won’t be recognized 
as the same animal.
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The key idea of a convolutional neural 
network: local similarity judgments

• The key idea of a convolutional 
neural network is that we perform 
the similarity judgments locally, in 
every patch of the image.
• If any patch of the image resembles 

the target image, we score a 
recognition

Similarity as a 
function of row 
and column 
indices
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How do we measure similarity? …. The math.

• Input image = 𝑥 𝑖, 𝑗

• Filter (pattern being 
detected) = ℎ[𝑖, 𝑗]

•Output image (grid of 
local detection 
strengths) = 𝑦 𝑘, 𝑙
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How do we measure similarity?
Answer: local dot product = correlation

!
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How do we measure similarity?
Answer: local dot product = correlation
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Correlation versus Convolution

• This formula is called the correlation of ℎ[𝑖, 𝑗] with 𝑥 𝑖, 𝑗 :

𝑦 𝑘, 𝑙 = ,
!

,
"

ℎ[𝑖 − 𝑘, 𝑗 − 𝑙]𝑥 𝑖, 𝑗

• This formula is called the convolution of ℎ[𝑖, 𝑗] with 𝑥 𝑖, 𝑗 :

𝑦 𝑘, 𝑙 = ,
!

,
"

ℎ[𝑘 − 𝑖, 𝑙 − 𝑗]𝑥 𝑖, 𝑗



Why use convolution if correlation is easier to 
visualize?

• Historical reason: Convolution is related to Fourier transform

• Computational reason?  Not really, they have exactly the same 
computational complexity

• The only reason that is kind of useful: convolution, unlike correlation, 
is symmetric:
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ℎ[𝑖, 𝑗]𝑥 𝑘 − 𝑖, 𝑙 − 𝑗



Convolutional neural net

A convolutional neural net is the 
same thing as a correlational 
neural net, except that the filter 
is defined upside down and 
backward, like this.
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Convolutional neural net

The convolution operation then
• Flips the filter rightside up, 
• Shifts it to ℎ[𝑘 − 𝑖, 𝑙 − 𝑗]
• Computes the similarity:

𝑦 𝑘, 𝑙 = !
!

!
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Convolutional neural net

𝑦 𝑘, 𝑙
=?

#

?
$

ℎ[𝑘 − 𝑖, 𝑙 − 𝑗]𝑥 𝑖, 𝑗

This is often written as
𝑦 𝑘, 𝑙 = ℎ 𝑘, 𝑙 ∗ 𝑥 𝑘, 𝑙
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Quiz

• Try the quiz!
https://us.prairielearn.com/pl/course_instance/147925/assessment/
2400008

https://us.prairielearn.com/pl/course_instance/147925/assessment/2400008
https://us.prairielearn.com/pl/course_instance/147925/assessment/2400008
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Back-prop through convolution

• Suppose we’ve computed 𝑦 𝑘, 𝑙 = ∑!∑" ℎ[𝑖, 𝑗]𝑥 𝑘 − 𝑖, 𝑙 − 𝑗

• Now suppose we know #ℒ
#%[',)]

• We want to train ℎ[𝑖, 𝑗] = ℎ[𝑖, 𝑗] − 𝜂 #ℒ
#+[!,"]

• How do we find #ℒ
#+[!,"]

?



Back-prop through convolution

Answer: use the chain rule!

𝑦 𝑘, 𝑙 = ∑!∑" ℎ[𝑖, 𝑗]𝑥 𝑘 − 𝑖, 𝑙 − 𝑗 , so…
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Too much information
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• Convolution gives large output at the 
cat’s location

• … but the output, 𝑦 𝑘, 𝑙 , is the same 
(huge) size as the input image!

• How can we check to see if there is a 
cat somewhere in the image?

Convolution
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Max Pooling
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•Max pooling finds the maximum of 𝑦[𝑘, 𝑙] 
over some range of input pixels…
•…so we know whether or not the cat was 

in that region of the image.
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Max Pooling
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… where 𝑝 is the “pooling.” In this example, 
𝑝 = 2 pixels, which is typical.
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Object detection: convolution, max pooling, 
vectorize, then use a linear classifier
• Convolution detects an object, no matter where it is,
• Max pooling keeps the best detection of the object in each region,
• Linear classifier tests if the best detection is good enough.
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Back-prop through max-pooling

• Suppose we’ve computed  𝑧 𝑚, 𝑛 = max
,-. /0.1'1,/,
2-. /0.1)12/

𝑦 𝑘, 𝑙  

• Now suppose we know #ℒ
#3[,,2]

• In order to train the neural net, we need #ℒ
#%[',)]

• How do we find #ℒ
#%[',)]

?



Back-prop through max-pooling

Answer: use the chain rule!  
𝑧 𝑚, 𝑛 = max

!"# $%#&'&!$,
)"# $%#&*&)$

𝑦 𝑘, 𝑙  , so…
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𝑑𝑧[𝑚, 𝑛]
𝑑𝑦[𝑘, 𝑙]

=
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0 otherwise



Back-prop through max-pooling

𝑙

𝑘

In every 2x2 block of 𝑦[𝑘, 𝑙], only one pixel has nonzero Aℒ
AB[C,D]

All the other pixels have zero gradient.
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LeNet, 1998
• (Convolution, Nonlinearity, Max-pooling, Normalization) X 2 layers
• After the second subsampling, the resulting features are concatenated to 

form a vector, which is then classified.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, 
Proc. IEEE 86(11): 2278–2324, 1998.

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf


AlexNet
• Similar framework to LeNet but:

• Bigger model (7 hidden layers, 650,000 units, 60,000,000 params)
• More data (106 vs. 103 images)
• GPU implementation (50x speedup over CPU)

• Trained on two GPUs for a week

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional 
Neural Networks, NIPS 2012

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf


ImageNet Challenge

  

Validation classification

  

Validation classification

  

Validation classification

[Deng et al. CVPR 2009] 

• ~14 million labeled images, 20k classes

• Images gathered from Internet

• Human labels via Amazon MTurk 

• Challenge: 1.2 million training images, 
1000 classes

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional 
Neural Networks, NIPS 2012

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf


Layer 1 Filters

M. Zeiler and R. Fergus, Visualizing and Understanding Convolutional Networks, 
arXiv preprint, 2013

http://arxiv.org/pdf/1311.2901v3.pdf


Layer 1: Top-9 Patches



Layer 2: Top-9 Patches

• Patches from validation images that give maximal activation of a given feature map 



Layer 3: Top-9 Patches
Layer 3: Top-9 Patches



Layer 4: Top-9 Patches



Layer 5: Top-9 Patches



Conclusion: Convolution and Max Pooling

𝑦 𝑘, 𝑙 = ℎ[𝑘, 𝑙] ∗ 𝑥 𝑘, 𝑙 =+
+

+
,

ℎ[𝑘 − 𝑖, 𝑙 − 𝑗]𝑥 𝑖, 𝑗

𝑑ℒ
𝑑ℎ[𝑖, 𝑗]

=+
'

+
*

𝑑ℒ
𝑑𝑦[𝑘, 𝑙]

𝑑𝑦[𝑘, 𝑙]
𝑑ℎ[𝑖, 𝑗]

𝑧 𝑚, 𝑛 = max
!"# $%#&'&!$,
)"# $%#&*&)$

𝑦 𝑘, 𝑙  

𝑑ℒ
𝑑𝑦[𝑘, 𝑙] =

𝑑ℒ
𝑑𝑧[𝑚, 𝑛]

if	𝑦 𝑘, 𝑙 = max
!"# $%#&+&!$,
)"# $%#&,&)$

𝑦 𝑖, 𝑗  

0 otherwise


