
CS440/ECE448
Lecture 9:
Linear Regression
Mark Hasegawa-Johnson, 2/2024
These lecture slides are in the public
domain. Re-use, remix, or
redistribute at will.

Public domain
image, Oleg

Alexandrov, 2008

Outline

• Notation for vectors and matrices
• Definition of linear regression
• Mean-squared error
• Learning the solution: gradient descent
• Learning the solution: stochastic gradient descent

Vectors are lowercase bold letters

Vectors will always be column vectors. Thus:

𝒙 =
𝑥!
⋮
𝑥"

𝒘# = 𝑤!, ⋯ , 𝑤"

𝒘#𝒙 = 𝑤!, ⋯ , 𝑤"
𝑥!
⋮
𝑥"

=)
$%!

"

𝑤$𝑥$

In numpy, the dot product can be written np.dot(w,x) or w@x.

Matrices are uppercase bold letters

𝒙 =
𝑥!
⋮
𝑥"

, 𝑾 =
𝑤!,! ⋯ 𝑤!,"
⋮ ⋱ ⋮

𝑤$,! ⋯ 𝑤$,"

𝑾𝒙 =
𝑤!,! ⋯ 𝑤!,"
⋮ ⋱ ⋮

𝑤$,! ⋯ 𝑤$,"

𝑥!
⋮
𝑥"

=

*
%&!

"

𝑤!,%𝑥%

⋮

*
%&!

"

𝑤$,%𝑥%

In numpy, the matrix multiplication can be written np.matmul(w,x) or w@x.

Vector and Matrix Gradients

The gradient of a scalar function with respect to a vector or matrix is:

𝜕𝑓
𝜕𝒙

=

𝜕𝑓
𝜕𝑥!
⋮
𝜕𝑓
𝜕𝑥"

,
𝜕𝑓
𝜕𝑾

=

𝜕𝑓
𝜕𝑤!,!

⋯
𝜕𝑓
𝜕𝑤!,"

⋮ ⋱ ⋮
𝜕𝑓

𝜕𝑤',!
⋯

𝜕𝑓
𝜕𝑤',"

The symbol ()
(*!

means “partial derivative of f with respect to 𝑥!.”

Outline

• Pythonic notation for vectors and matrices
• Definition of linear regression
• Mean-squared error
• Learning the solution: gradient descent
• Learning the solution: stochastic gradient descent

Linear regression
Linear regression is used to
estimate a real-valued target
variable, 𝑦, using a linear
combination of real-valued input
variables:

𝑓 𝒙 = 𝒘#𝒙 + 𝑏 =)
+%,

-.!

𝑤+𝑥+ + 𝑏

… so that …
𝑓 𝒙 ≈ 𝑦

Linear regression. Public
domain image, Seewaqu, 2010

𝑦

𝑓(𝑥)

𝑥!

𝑏

𝑤!

Outline

• Pythonic notation for vectors and matrices
• Definition of linear regression
• Mean-squared error
• Learning the solution: gradient descent
• Learning the solution: stochastic gradient descent

What does it mean that
𝑓 𝒙 ≈ 𝑦?
• Generally, we want to choose

the weights and bias, 𝑤 and 𝑏, in
order to minimize the errors.
• The errors are the vertical green

bars in the figure at right,
𝜖 = 𝑓 𝒙 − 𝑦

• Some of them are positive, some
are negative. What does it mean
to “minimize” them? Public domain

image, Oleg
Alexandrov, 2008

First: count the training
tokens
Let’s introduce one more index
variable. Let 𝑖=the index of the training
token.

𝒙$ =

1
𝑥$,!
⋮
𝑥$,"

𝑓 𝒙$ = 𝒘#𝒙$ + 𝑏 =)
+%,

-.!

𝑥$,+𝑤+ + 𝑏
Public domain

image, Oleg
Alexandrov, 2008

Training token errors

Using that notation, we can define a
signed error term for every training
token:

𝜖$ = 𝑓 𝒙$ − 𝑦$

The error term is positive for some
tokens, negative for other tokens.
What does it mean to minimize it?

Public domain
image, Oleg

Alexandrov, 2008

Mean-squared error
One useful criterion (not the only useful criterion, but
perhaps the most common) of “minimizing the error” is
to minimize the mean squared error:

ℒ =
1
2𝑛
4
!"#

$

𝜖!% =
1
2𝑛
4
!"#

$

𝑓(𝒙!) − 𝑦! %

Literally,

• … the mean …

• … of the squares …

• … of the error terms.

The factor #
%

is included so that, so that when you

differentiate ℒ, the 2 and the #
%

can cancel each other.

Public domain
image, Oleg

Alexandrov, 2008

Outline

• Pythonic notation for vectors and matrices
• Definition of linear regression
• Mean-squared error
• Learning the solution: gradient descent
• Learning the solution: stochastic gradient descent

MSE = Parabola
Notice that MSE is a non-negative
quadratic function of 𝑓 𝒙$ =
𝒘#𝒙$ + 𝑏, therefore it’s a non-
negative quadratic function of 𝒘.
Since it’s a non-negative quadratic
function of 𝒘, it has a unique
minimum that you can compute in
closed form!
We won’t do that today.

𝑤

ℒ =
1
2𝑛
&
#$%

&

𝑓(𝒙#) − 𝑦# '

The iterative solution to linear regression
Instead of minimizing MSE in closed
form, we’re going to use an iterative
algorithm called gradient descent. It
works like this:
• Start: random initial 𝒘 and 𝑏 (at
𝑡 = 0).
• Adjust 𝒘 and 𝑏 to reduce MSE (𝑡 =
1).
• Repeat until you reach the

optimum (𝑡 = ∞).
𝑤

𝑡 = 0

𝑡 = 1
𝑡 = ∞

…

ℒ =
1
2𝑛
&
#$%

&

𝑓(𝒙#) − 𝑦# '

The iterative solution to linear regression
• Start from random initial values of 𝒘

and 𝑏 (at 𝑡 = 0).
• Adjust 𝑤 and 𝑏 according to:

𝒘 ← 𝒘− 𝜂
𝜕ℒ
𝜕𝒘

𝑏 ← 𝑏 − 𝜂
𝜕ℒ
𝜕𝑏

…where 𝜂 is a hyperparameter called
the “learning rate,” that determines
how big of a step you take. Usually, you
need to adjust 𝜂 in order to get
optimum performance on a dev set.

𝑤

𝑡 = 0

𝑡 = 1
𝑡 = ∞

…

ℒ =
1
2𝑛
&
#$%

&

𝑓(𝒙#) − 𝑦# '

Finding the gradient

ℒ =
1
2𝑛*

%&!

"

ℒ% , ℒ% = 𝜖%', 𝜖% = 𝒘(𝒙% + 𝑏 − 𝑦%

To find the gradient, we use the chain rule of calculus:

𝜕ℒ
𝜕𝒘 =

1
2𝑛*

%&!

"
𝜕ℒ%
𝜕𝒘 ,

𝜕ℒ%
𝜕𝒘 = 2𝜖%

𝜕𝜖%
𝜕𝒘 ,

𝜕𝜖%
𝜕𝒘 = 𝒙%

Putting it all together,

𝜕ℒ
𝜕𝒘 =

1
𝑛*
%&!

"

𝜖%𝒙%

The iterative solution to linear regression
• Start from random initial values of
𝒘 and 𝑏 (at 𝑡 = 0).

• Adjust 𝒘 and 𝑏 according to:

𝒘 ← 𝒘 −
𝜂
𝑛
)
$%!

"

𝜖$𝒙$

𝑏 ← 𝑏 −
𝜂
𝑛
)
$%!

"

𝜖$

𝑤

𝑡 = 0

𝑡 = 1
𝑡 = ∞

…

ℒ =
1
2𝑛
&
#$%

&

𝜖#'

Public domain
image, Oleg

Alexandrov, 2008

Intuition:
• Notice the sign:

𝒘 ← 𝒘 −
𝜂
𝑛
)
$%!

"

𝜖$𝒙$

• If 𝜖$ is positive (𝑓(𝒙$) > 𝑦$), then
we want to reduce 𝑓(𝒙$), so we
make 𝒘 less like 𝒙$
• If 𝜖$ is negative (𝑓(𝒙$) < 𝑦$), then

we want to increase 𝑓(𝒙$), so we
make 𝒘 more like 𝒙$

Outline

• Pythonic notation for vectors and matrices
• Definition of linear regression
• Mean-squared error
• Learning the solution: gradient descent
• Learning the solution: stochastic gradient descent

Stochastic gradient descent
• If n is large, computing or differentiating MSE can be expensive.
• The stochastic gradient descent algorithm picks one training token
𝒙$, 𝑦$ at random (”stochastically”), and adjusts 𝑤 in order to reduce

the error a little bit for that one token:

𝒘 ← 𝒘 − 𝜂
𝜕ℒ$
𝜕𝒘

…where

ℒ$ = 𝜖$< =
1
2
𝑓(𝒙$) − 𝑦$ <

Stochastic gradient descent

ℒ! = 𝜖!" =
1
2
𝒘#𝒙! + 𝑏 − 𝑦! "

If we differentiate that, we discover
that:

𝜕ℒ!
𝜕𝒘

= 𝜖!𝒙! ,
𝜕ℒ!
𝜕𝑏

= 𝜖!

So the stochastic gradient descent
algorithm is:
𝒘 ← 𝒘 − 𝜂𝜖!𝒙! , 𝑏 ← 𝑏 − 𝜂𝜖!

𝒘

ℒ# =
1
2
𝑓(𝒙#) − 𝑦# '

𝒘 ← 𝒘 − 𝜂𝜖$𝒙$

The Stochastic Gradient Descent Algorithm

1. Choose a sample 𝒙$, 𝑦$ at random from the training data
2. Compute the error of this sample, 𝜖$ = 𝒘#𝒙$ + 𝑏 − 𝑦$
3. Adjust 𝒘 and 𝑏 in the direction opposite the error:

𝒘 ← 𝒘 − 𝜂𝜖$𝒙$
𝑏 ← 𝑏 − 𝜂𝜖$

4. If the error is still too large, go to step 1. If the error is small
enough, stop.

Today’s Quiz

Go to
https://us.prairielearn.com/pl/course_instance/147925/assessment/23
95554, try the quiz!

https://us.prairielearn.com/pl/course_instance/147925/assessment/2395554
https://us.prairielearn.com/pl/course_instance/147925/assessment/2395554

Video of SGD

https://upload.wikimedia.org/wikipedia/commons/5/57/Stochastric_G
radient_Descent.webm
In this video, the different colored dots are different, randomly chosen
starting points.
Each step of SGD uses a randomly chosen training token, so the
direction is a little random.
But after a while, it reaches the bottom of the parabola!

https://upload.wikimedia.org/wikipedia/commons/5/57/Stochastric_Gradient_Descent.webm
https://upload.wikimedia.org/wikipedia/commons/5/57/Stochastric_Gradient_Descent.webm

Summary
• Definition of linear regression

𝑓 𝒙 = 𝒘(𝒙 + 𝑏
• Mean-squared error

ℒ =
1
2𝑛*

%&!

"

ℒ% , ℒ% = 𝜖%', 𝜖% = 𝑓 𝒙% − 𝑦%

• Gradient descent

𝒘 ← 𝒘− 𝜂
𝜕ℒ
𝜕𝒘 ,

𝜕ℒ
𝜕𝒘 =

1
𝑛*
%&!

"

𝜖%𝒙%

• Stochastic gradient descent

𝒘 ← 𝒘− 𝜂
𝜕ℒ%
𝜕𝒘 ,

𝜕ℒ%
𝜕𝒘 = 𝜖%𝒙%

