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Naïve Bayes

• minimum probability of error using Bayes’ rule
• naïve Bayes
• unigrams and bigrams
• estimating the likelihood: maximum likelihood parameter estimation
• Laplace smoothing



MPE = MAP using Bayes’ rule
𝑓(𝑥) = argmax

!
𝑃(𝑌 = 𝑦|𝑋 = 𝑥)

= argmax
!

𝑃(𝑌 = 𝑦)𝑃 𝑋 = 𝑥 𝑌 = 𝑦
𝑃(𝑋 = 𝑥)

= argmax
!

𝑃(𝑌 = 𝑦)𝑃 𝑋 = 𝑥 𝑌 = 𝑦



Naïve Bayes

• minimum probability of error using Bayes’ rule
• naïve Bayes
• unigrams and bigrams
• estimating the likelihood: maximum likelihood parameter estimation
• Laplace smoothing



The problem with likelihood: Too many words
What does it mean to say that the words, x, have a particular probability?
Suppose our training corpus contains two sample emails:
Email1: 𝑌 = spam, 𝑋 =“Hi there man – feel the vitality! Nice meeting you…”
Email2: 𝑌 = ham,𝑋 =“This needs to be in production by early afternoon…”

Our test corpus is just one email:
Email1: X=“Hi! You can receive within days an approved prescription for 
increased vitality and stamina”

How can we estimate 𝑃(𝑋 = “Hi! You can receive within days an approved
prescripKon for increased vitality and stamina”|𝑌 = spam)?



Naïve Bayes: the “Bag-of-words” model
We can estimate the likelihood of an e-mail by pretending that the e-mail 
is just a bag of words (order doesn’t matter).
With only a few thousand spam e-mails, we can get a pretty good estimate 
of these things:

• 𝑃(𝑊 = “hi”|𝑌 = spam), 𝑃(𝑊 = “hi”|𝑌 = ham)
• 𝑃(𝑊 = “vitality”|𝑌 = spam), 𝑃(𝑊 = “vitality”|𝑌 = ham)
• 𝑃(𝑊 = “production”|𝑌 = spam), 𝑃(𝑊 = “production”|𝑌 = ham)

Then we can approximate 𝑃(𝑋|𝑌) by assuming that the words, 𝑊, are 
conditionally independent of one another given the category label:

𝑃(𝑋 = 𝑥|𝑌 = 𝑦) ≈>
!"#

$

𝑃(𝑊 = 𝑤!|𝑌 = 𝑦) approved

prescription
foryou

vitality
hi



Naïve Bayes Representation
• Goal: estimate likelihoods P(Document | Class) 

and priors P(Class)
• Likelihood: bag of words representation

• The document is a sequence of words [𝑤@, 𝑤A, … , 𝑤B]
• The order of the words in the document is not important
• Each word is conditionally independent of the others given document 

class 



Bag of words illustration

US Presidential Speeches Tag Cloud
http://chir.ag/projects/preztags/
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Why naïve Bayes is “naïve”
We call this model “naïve Bayes” because the words aren’t really conditionally independent 
given the label.  For example, the sequence “for you” is more common in spam emails than 
it would be if the words “for” and “you” were conditionally independent.
True Statement:

𝑃 𝑋 = for you 𝑌 = Spam > 𝑃 𝑊 = for 𝑌 = Spam 𝑃 𝑊 = you 𝑌 = Spam

The naïve Bayes approximation simply says: estimating the likelihood of every word 
sequence is too hard, so for computational reasons, we’ll pretend that sequence probability 
doesn’t matter.
Naïve Bayes Approximation:

𝑃 𝑋 = for you 𝑌 = Spam ≈ 𝑃 𝑊 = for 𝑌 = Spam 𝑃 𝑊 = you 𝑌 = Spam

We use naïve Bayes a lot because, even though we know it’s wrong, it gives us 
computationally efficient algorithms that work remarkably well in practice.  



MPE = MAP using naïve Bayes
Using naïve Bayes, the MPE decision rule is:

𝑓(𝑥) = argmax
!

𝑃(𝑌 = 𝑦)0
"#$

%

𝑃(𝑊 = 𝑤"|𝑌 = 𝑦)



Quiz!

• Go to the course web page, click on “24-Jan” to access the 24-Jan quiz 
on PrairieLearn



Floating-point underflow

𝑓(𝑥) = argmax
!

𝑃(𝑌 = 𝑦)6
"#$

%

𝑃(𝑊 = 𝑤"|𝑌 = 𝑦)

• That equation has a computational issue.  Suppose that the probability of 
any given word is roughly 𝑃(𝑊 = 𝑤"|𝑌 = 𝑦) ≈ 10&', and suppose that 
there are 103 words in an email.  Then ∏"#$

% 𝑃(𝑊 = 𝑤"|𝑌 = 𝑦) = 10&'(), 
which gets rounded off to zero.  This phenomenon is called “floating-point 
underflow.”
• In order to avoid floating-point underflow, we can take the logarithm of the 

equation above:

𝑓(𝑥) = argmax
!

ln 𝑃(𝑌 = 𝑦) +@
"#$

%

ln 𝑃(𝑊 = 𝑤"|𝑌 = 𝑦)
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Reducing the naivety of naïve Bayes
Remember that the bag-of-words model is unable to represent this fact:
True Statement:
𝑃 𝑋 = for you 𝑌 = Spam > 𝑃 𝑊 = for 𝑌 = Spam 𝑃 𝑊 = you 𝑌 = Spam

Though the bag-of-words model can’t represent that fact, we can 
represent it using a slightly more sophisticated naïve Bayes model, called 
a “bigram” model.



N-Grams
Claude Shannon, in his 1948 book A Mathematical Theory of Communication, 
proposed that the probability of a sequence of words could be modeled using N-
grams: sequences of N consecutive words.

• Unigram: a unigram (1-gram) is an isolated word, e.g., “you”
• Bigram: a bigram (2-gram) is a pair of words, e.g., “for you”
• Trigram: a trigram (3-gram) is a triplet of words, e.g., “prescription for you”
• 4-gram: a 4-gram is a 4-tuple of words, e.g., “approved prescription for you”



Bigram naïve Bayes
A bigram naïve Bayes model approximates the bigrams as conditionally 
independent, instead of the unigrams.  For example,

𝑃 𝑋 = “approved prescription for you” 𝑌 = Spam ≈

𝑃 𝐵 = “approved prescription” 𝑌 = Spam ×
𝑃 𝐵 = “prescription for” 𝑌 = Spam ×

𝑃 𝐵 = “for you” 𝑌 = Spam



Advantages and disadvantages of bigram 
models relative to unigram models
• Advantage: the bigram model can tell you if a particular bigram is 

much more frequent in spam than in ham emails.
• Disadvantage: over-training.  Even if probabilities of individual words 

in the training and test corpora are similar, probabilities of bigrams 
might be different.
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What are “parameters”?

• Oxford English dictionary: parameter (noun): a numerical or other 
measurable factor forming one of a set that defines a system or sets 
the conditions of its operation.
• The naïve Bayes model has two types of parameters:

• The a priori parameters: 𝑃(𝑌 = 𝑦)
• The likelihood parameters: 𝑃(𝑊 = 𝑤C|𝑌 = 𝑦)

• In order to create a naïve Bayes classifiers, we must somehow 
estimate the numerical values of those parameters.



Parameter estimation
Model parameters: feature likelihoods P(Word | Class) and priors P(Class) 

• How do we obtain the values of these parameters?

spam:  0.33

¬spam:  0.67 

P(word | ham)P(word | spam)prior



Parameter estimation: Prior

The prior, 𝑃(𝑌), is usually estimated in one of two ways.
• If we believe that the test corpus is like the training corpus, then we 

just use frequencies in the training corpus:

𝑃(𝑌 = Spam) =
Docs(𝑌 = Spam)

Docs 𝑌 = Spam + Docs(𝑌 ≠ Spam)
where “Docs(Y=Spam)” means the number of documents in the 
training corpus that have the label Y=Spam.
• If we believe that the test corpus is different from the training corpus, 

then we set 𝑃(𝑌 = Spam) = the frequency with which we believe 
spam will occur in the test corpus.



Parameter estimation: Likelihood

The likelihood, 𝑃(𝑊 = 𝑤"|𝑌 = 𝑦), is also estimated by counting. 
The “maximum likelihood estimate of the likelihood parameter” is the 
most intuitively obvious estimate:

𝑃(𝑊 = 𝑤"|𝑌 = Spam) =
Count(𝑊 = 𝑤" , 𝑌 = Spam)

Count 𝑌 = Spam

where “Count(𝑊 = 𝑤" , 𝑌 = Spam)” means the number of times that 
the word 𝑤" occurs in the Spam portion of the training corpus, and 
“Count 𝑌 = Spam ” is the total number of words in the Spam portion.
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What is the probability that the sun will fail to 
rise tomorrow?
• # times we have observed the sun to rise = 1,825,000
• # times we have observed the sun not to rise = 0

• Estimated probability the sun will not rise = &
&'$,)*+,&&&

= 0

Oops….



Laplace Smoothing
• The basic idea: add 𝑘 “unobserved observations” to every possible 

event
• # times the sun has risen or might have ever risen = 1,825,000+k
• # times the sun has failed to rise or might have ever failed to rise = 

0+k

• Estimated probability the sun will rise tomorrow = $,)*+,&&&',
$,)*+,&&&'*,

• Estimated probability the sun will not rise = ,
$,)*+,&&&'*,

• Notice that, if you add these two probabilities together, you get 1.0.



Laplace Smoothing for Naïve Bayes
• The basic idea: add 𝑘 “unobserved observations” to the count of every unigram

• If a word occurs 2000 times in the training data, Count = 2000+k
• If a word occur once in training data, Count = 1+k
• If a word never occurs in the training data, then it gets a pseudo-Count of k

• Estimated probability of a word that occurred Count(w) times in the training data: = 

𝑃 𝑊 = 𝑤 =
𝑘 + Count(𝑊 = 𝑤)

𝑘 + ∑% 𝑘 + Count(𝑊 = 𝑣)

• Estimated probability of a word that never occurred in the training data (an “out of vocabulary” or OOV 
word):

𝑃 𝑊 = 𝑂𝑂𝑉 =
𝑘

𝑘 + ∑% 𝑘 + Count(𝑊 = 𝑣)

• Notice that

𝑃 𝑊 = 𝑂𝑂𝑉 +K
&

P(𝑊 = 𝑤) = 1



Conclusions
• MPE = MAP with Bayes’ rule:

𝑓(𝑥) = argmax log𝑃(𝑌 = 𝑦) + log𝑃(𝑋 = 𝑥|𝑌 = 𝑦)
• naïve Bayes:

log𝑃(𝑋 = 𝑥|𝑌 = 𝑦) ≈;
!"#

$

log𝑃(𝑊 = 𝑤!|𝑌 = 𝑦)

• maximum likelihood parameter estimation:

𝑃(𝑊 = 𝑤!) =
Count(𝑊 = 𝑤!)
∑% Count(𝑊 = 𝑣)

• Laplace Smoothing:

𝑃(𝑊 = 𝑤!) =
𝑘 + Count(𝑊 = 𝑤!)

𝑘 +∑% 𝑘 + Count(𝑊 = 𝑣)


