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Abstract

Reinforcement learning is the process by which an autonomous agent uses its experience

interacting with an environment to improve its behavior. The Markov decision process

(MDP) model is a popular way of formalizing the reinforcement-learning problem, but

it is by no means the only way. In this paper, we show how many of the important the-
oretical results concerning reinforcement learning in MDPs extend to a generalized MDP
model that includes MDPs, two-player games and MDPs under a worst-case optimality

criterion as special cases. The basis of this extension is a stochastic-approximation

theorem that reduces asynchronous convergence to synchronous convergence.
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1 INTRODUCTION

Reinforcement learning is the process by which an agent improves its behavior in an en-
vironment via experience. A reinforcement-learning scenario is defined by the experience
presented to the agent at each step, and the criterion for evaluating the agent’s behavior.

One particularly well-studied reinforcement-learning scenario is that of a single agent
maximizing expected discounted total reward in a finite-state environment; experiences are
of the form (x,a,y,r), where x is a state, « is an action, y is a resulting state and r is the
scalar immediate reward to the agent. A discount parameter 0 <~ < 1 controls the degree
to which future rewards are significant compared to immediate rewards.

The theory of Markov decision processes can be used as a theoretical foundation for
important results concerning this reinforcement-learning scenario [1]. A (finite) Markov
decision process (MDP) [18] is defined by the tuple (S, A, P, R), where S represents a finite
set of states, A a finite set of actions, P a transition function, and R a reward function.
The optimal behavior for an agent in an MDP depends on the optimality criterion; for the
infinite-horizon discounted criterion, the optimal behavior can be found by identifying the
optimal value function, defined recursively by

V(e) = g (Rrsa) 49 3 Pl V)

for all states @ € S, where R(x,a) is the immediate reward for taking action a from state
z,0 < v < 1is a discount factor, and P(x,a,y) is the probability that state y is reached
from state © when action a € A is chosen. These simultaneous equations, known as the
Bellman equations, can be solved using a variety of techniques ranging from successive
approximation [2] to linear programming [6].

In the absence of complete information regarding the transition and reward functions,
reinforcement-learning methods can be used to find optimal value functions. Both model-
free (direct) methods, such as Q-learning [33], and model-based (indirect) methods, such as
prioritized sweeping [15] and DYNA [26], have been explored and many have been shown to
converge to optimal value functions under the proper conditions [33, 31, 10, 7).

As we mentioned before, not all reinforcement-learning scenarios of interest can be mod-
eled as MDPs. A great deal of reinforcement-learning research has been directed to the
problem of solving two-player games [29, 30, 21, 4], for example, and the reinforcement-
learning algorithms for solving MDPs and their convergence proofs do not apply directly to
games. In one form of two-player game, experiences are of the form (x, a,y,r), where states
x and y contain additional information concerning which player (maximizer or minimizer)
gets to choose the action in that state, and the optimality criterion is minimax optimality.

There are deep similarities between MDPs and games; for example, it is possible to define
a set of Bellman equations for the optimal minimax value of a two-player zero-sum game,

V(a) = maxXe 4 (R(:L', a)+v>, P(x,a, y)V*(y)) , if maximizer moves in x
| minges (R(z,a) + X, P(x,a,y)V*(y)), if minimizer moves in z,

where R(x,a) is the reward to the maximizing player. When 0 < v < 1, these equations have
a unique solution and can be solved by successive-approximation methods [23]. In addition,



we show in this paper that the natural extension of several reinforcement-learning algorithms
for MDPs converge to optimal value functions in two-player games.

In this paper, we introduce a generalized Markov decision process model with applications
to reinforcement learning, and list some of the important results concerning the model. Gen-
eralized MDPs provide a foundation for the use of reinforcement learning in MDPs and games,
as well in risk-sensitive reinforcement learning [8], exploration-sensitive reinforcement learn-
ing [11], reinforcement learning in simultaneous-action games [13], and other models. Our
main theorem addresses the convergence of asynchronous stochastic processes and shows how
this problem can be reduced to determining the convergence of a corresponding synchronous
one; it can be used to prove the convergence of model-free and model-based reinforcement-
learning algorithms under a variety of different reinforcement-learning scenarios.

In Section 2, we present generalized MDPs, and motivate them using two detailed ex-
amples. In Section 3, we describe a stochastic-approximation theorem, and in Section 4 we
show several applications of the theorem that prove the convergence of learning processes in
generalized MDPs.

2 THE GENERALIZED MODEL

In this section, we introduce our generalized MDP model. We begin by summarizing some of
the more significant results regarding the standard MDP model and some important results
for two-player games.

2.1 MARKOYV DECISION PROCESSES

To provide a point of departure for our generalization of Markov decision processes, we begin
by describing some results concerning the use of reinforcement learning in the MDP scenario
described earlier. These results are well established; proofs of the unattributed claims can
be found in Puterman’s MDP book [18].

The ultimate target of learning is an optimal policy. A policy is some function that
tells the agent which actions should be chosen under which circumstances. A policy 7 is
optimal under the expected discounted total reward criterion if, with respect to the space of
all possible policies, 7 maximizes the expected discounted total reward from all states.

Maximizing over the space of all possible policies is practically infeasible. However,
MDPs have an important property that makes it unnecessary to consider such a broad space
of possibilities. We say a policy 7 is stationary and deterministic if it maps directly from
states to actions, ignoring everything else, and we write m(x) as the action chosen by w
when the current state is x. In expected discounted total reward MDP environments, there
is always a stationary deterministic policy that is optimal; we will therefore use the word
“policy” to mean stationary deterministic policy, unless otherwise stated.

The value function for a policy m, V™, maps states to their expected discounted total
reward under policy 7. It can be defined by the simultaneous equations

V™(z) = R(z,a) + ’yZP(:z:,a,y)V”(y).



It is also possible to condition the immedate rewards on the state y as well; this is somewhat
more general, but complicates the presentation. The optimal value function V> is the value
function of an optimal policy; it is unique for 0 < v < 1. The myopic policy with respect to
a value function V is the policy 7y such that

e) = g (Rlo) +7 5 Pleans) Vo).

Any myopic policy with respect to the optimal value function is optimal.
The Bellman equations can be operationalized in the form of the dynamic-programming
operator T', which maps value functions to value functions:

[TV)ie) = s Ao 2 3 Pl V) )

For 0 <~ < 1, successive applications of T' to a value function bring it closer and closer to
the optimal value function V*, which is the unique fixed point of T: V> = TV*.

In reinforcement learning, R and P are not known in advance. They can be learned
from experience by keeping statistics on the expected reward for each state-action pair, and
the proportion of transitions to each next state for each state-action pair. In model-based
reinforcement learning, R and P are estimated on-line, and the value function is updated
according to the approximate dynamic-programming operator derived from these estimates;
this algorithm converges to the optimal value function under a wide variety of choices of the
order states are updated [7].

The method of Q-learning [32] uses experience to estimate the optimal value function
without ever explicitly approximating R and P. The algorithm estimates the optimal Q
function

Q*(xva) = R(xva) + ’yZP(x,a,y)V*(y),

from which the optimal value function can be computed via V*(2) = max, @*(x,a). Given
the experience at step t (x4, ar, ys,r) and the current estimate Q;(x,a) of the optimal Q
function, Q-learning updates

Quri(we, ar) = (1 — au(@e, a0))Qul@e, ar) + oy, ar)(re + ymax Qu(ye, a)),

where 0 < oy(w,a) < 1is a learning rate that controls how quickly new estimates are blended
into old estimates as a function of the state-action pair and the trial number. Q-learning
converges to the optimal @ function under the proper conditions [33, 31, 10].

2.2 ALTERNATING MARKOV GAMES

In alternating Markov games, two players take turns issuing actions to try to maximize their
own expected discounted total reward. The model is defined by the tuple (S, S2, A, B, P, R),
where S is the set of states in which player 1 issues actions from the set A, S, is the set of
states in which player 2 issues actions from the set B, P is the transition function, and R is
the reward function for player 1. In the zero-sum games we consider, the rewards to player 2
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(the minimizer) are simply the additive inverse of the rewards for player 1 (the maximizer).
Markov decision processes are a special case of alternating Markov games in which Sy = §;
Condon [5] proves this and the other unattributed results in this section.

A common optimality criterion for alternating Markov games is discounted minimax
optimality. Under this criterion, the maximizer should choose actions so as to maximize
its reward in the event that the minimizer chooses the best possible counter-policy. An
equivalent definition is for the minimizer to choose actions to minimize its reward against the
maximizer with the best possible counter-policy. A pair of policies is said to be in equilibrium
if neither player has any incentive to change policies if the other player’s policy remains fixed.
The value function for a pair of equilibrium policies is the optimal value function for the
game; it is unique when 0 < 4 < 1, and can be found by successive approximation. For
both players, there is always a deterministic stationary optimal policy. Any myopic policy
with respect to the optimal value function is optimal, and any pair of optimal policies is in
equilibrium.

Dynamic-programming operators, Bellman equations, and reinforcement-learning algo-
rithms can be defined for alternating Markov games by starting with the definitions used in
MDPs and changing the maximum operators to either maximums or minimums conditioned
on the state. We show below that the resulting algorithms share their convergence properties
with the analogous algorithms for MDPs.

2.3 GENERALIZED MDPS

In alternating Markov games and MDPs, optimal behavior can be specified by the Bellman
equations; any myopic policy with respect to the optimal value function is optimal. In this
section, we generalize the Bellman equations to define optimal behavior for a broad class of
reinforcement-learning models. The objective criterion used in these models is additive in
that the the value of a policy is some measure of the total reward received.

The generalized Bellman equations can be written

Vi) =Q (R(:L',a) + ’y@v*(y)) . (1)
a y
Here, “Q” and “@” represent operators that summarize values over actions as a function
of the state @ and next states as a function of the state-action pair (x,a), respectively. For
Markov decision processes, @, f(z,a) = max, f(z,a) and @, g(x,a,y) = 2, P(z,a,y)g(, a,y).
For alternating Markov games, @, ¢(z,a,y) = X, P(z,a,y)g(z,a,y) and &, f(z,a) =
max, f(x,a) or min, f(x,a) depending whether x is in S; or S3. A large variety of other
models can be represented in this framework; several examples are discussed in Section 4.

From a reinforcement-learning perspective, the value functions defined by the generalized
MDP model can be interpreted as the total value of the rewards received by an agent selecting
actions in a stochastic environment. The agent begins in state z, takes action a, and ends
up in state y. The @ operator defines how the value of the next state should be used in
assigning value to the current state. The @ operator defines how an optimal agent should
choose actions.

When 0 < v < 1 and Q and @ are non-expansions, the generalized Bellman equations
have a unique optimal solution, and therefore, the optimal value function is well defined.



model /example reference R f(x,a) D, g(x,a,y)

disc. exp. MDPs [33] max, f(x,a) >, Plx,a,y)g(x,a,y)

exp. return of 7 [25] Yam(a,a)f(z,a) Yoy Plx,a,y)g(x,a,y)

alt. Markov games [4] max, or min, f(x,a) Yoy Plx,a,y)g(x,a,y)
risk-sensitive MDPs [§] max, f(x,a) MmNy, p(z.a,9)>0 9(T, @, Y)
exploration-sens. MDPs [11] max,ep, Y, 7(@, a) f(z, a) Z P(z,a,y)g(x,a y)
Markov games [13] max, ming ., A(a)f(x, (a,b)) P(x,(a,b),y)g(x,(a,b),y)
information-state MDP [16] max, f(x,«a) ZyeN (wa) P(T,0,9)g (:1; a,y)

Table 1: Some reinforcement-learning scenarios and their specification as generalized Markov
decision processes.

The @ operator is a non-expansion if

®f1(:1?,a) - ®f2($7a) < ij|f1($va) — fa(x, a)l

for all f1, fo, and . An analogous condition defines when € is a non-expansion.

Many natural operators are non-expansions, such as max, min, midpoint, median, mean,
and fixed weighted averages of these operations. Mode and Boltzmann-weighted averages
are not non-expansions. Several previously described reinforcement-learning scenarios are
special cases of this generalized MDP model—Table 1 gives a brief sampling. For more
information about the specific models listed, see the associated references.

As with MDPs, we can define a dynamic-programming operator

V() = ® (R<x, 4@ v<y>) 2)

a

such that for 0 <~ < 1 the optimal value function V* is the unique fixed point of T'. The
operator T' is a contraction mapping as long as v < 1. Recall that an operator T is a
contraction mapping if

sup [TVi](2) — [TVa](2)] < ysup [Vi(z) — Va()]

where V] and V; are arbitrary functions and 0 < ~ < 1 is the index of contraction.
We can define a notion of stationary myopic policies with respect to a value function V;
it is any (stochastic) policy my for which T™V = TV where

[T™V](x) = Z m(x,a) (R(:L', a)+ @ V(y)) )

a

Here 7(x, a) represents the probability that an agent following 7 would choose action « in
state x. To be certain that every value function possesses a myopic policy, we require that
the operator @ satisfy the following property: for all functions f and states x, min, f(x,a) <

Qo f(x,a) < max, f(x,a).



The value function with respect to a policy m, V™ can be defined by the simultaneous

equations
V() = X rte) (R 40 @170
a Yy

it is unique. A policy 7 is optimal if it is myopic with respect to its own value function. If
7 is an optimal policy, then V™ is the fixed point of T because V™ = T V™ = TV"™.
Thus, V™ = V*, when v < 1 because T has a unique fixed point.

The next section describes a general theorem that can be used to prove the convergence
of several reinforcement-learning algorithms for these and other models.

3 CONVERGENCE THEOREM

The process of finding an optimal value function can be viewed in the following general
way. At any moment in time, there is a set of values representing the current approximation
of the optimal value function. On each iteration, we apply some dynamic-programming
operator, perhaps modified by experience, to the current approximation to generate a new
approximation. Over time, we would like the approximation to tend toward the optimal
value function.

In this process, there are two types of approximation going on simultaneously. The first
is an approximation of the dynamic-programming operator for the underlying model, and
the second is the use of the approximate dynamic-programming operator to find the optimal
value function. This section presents a theorem that gives a set of conditions under which
this type of simultaneous stochastic approximation converges to an optimal value function.

First, we need to define the general stochastic process. Let the set X be the states of
the model, and the set B(X) of bounded, real-valued functions over X be the set of value
functions. Let T : B(X) — B(X) be an arbitrary contraction mapping and V* be the fixed
point of T.

If we had direct access to the contraction mapping T, we could use it to successively
approximate V*. In most reinforcement-learning scenarios, 7' is not available and we must use
our experience to construct approximations of 7. Consider a sequence of random operators
T, : B(X) - (B(X) — B(X)) and define U1 = [T}U;]V where V and Uy € B(X) are
arbitrary value functions. We say T} approximates T" at V' with probability 1 uniformly over
X, if U; converges to TV uniformly over X'. The basic idea is that T} is a randomized
version of T' in some sense; it uses U; as “memory” to help it approximate TV .

The following theorem shows that, under the proper conditions, we can use the sequence
T; to estimate the fixed point V* of T

Theorem 1 Let T be an arbitrary mapping with fized point V*, and let T; approzimate T
at V* with probability 1 uniformly over X. Let Vi be an arbitrary value function, and define
Vier = [TiVi)Vi. If there exist functions 0 < Fy(x) < 1 and 0 < Gi(x) < 1 satisfying the
conditions below with probability one, then V; converges to V* with probability 1 uniformly
over X:

LA sequence of functions f,, converges to f* with probability 1 uniformly over X if, for the events w for
which f,,(w,z) — f*, the convergence is uniform in x.



1. for all Uy, and Uy € B(X) and all x € X,
([TUVT) () = ([TL]V7) ()| < Gi(w) sup [Ur(2') — Us(2)];
2. for allU and V € B(X), and oll v € X,

LUV () = (LUIV)(@)] < Fi(w) sup [V*(2') = V(2)};

3. for all k> 0, IIT_, Gi(x) converges to zero uniformly in x as n increases; and,

4. there exists 0 < v < 1 such that for all x € X and large enough t,

Fi(x) <A(1 = Gi(2)),

Note that from the conditions of the theorem, it follows that 7" is a contraction operator
at V* with index of contraction . The theorem is proven in an extended version of this
paper [28]. We next describe some of the intuition behind the statement of the theorem and
its conditions.

The iterative approximation of V* is performed by computing V,y; = [T;V;]V;, where T;
approximates T' with the help of the “memory” present in V;. Because of Conditions 1 and 2,
Gy(x) is the extent to which the estimated value function depends on its present value and
Fi(x) = 1 — Gy(x) is the extent to which the estimated value function is based on “new”
information (this reasoning becomes clearer in the context of the applications in Section 4).

In some applications, such as Q-learning, the contribution of new information needs to
decay over time to insure that the process converges. In this case, Gi(x) needs to converge
to one. Condition 3 allows G(x) to converge to 1 as long as the convergence is slow enough
to incorporate sufficient information for the process to converge.

Condition 4 links the values of Gi(x) and Fi(x) through some quantity v < 1. If it
were somehow possible to update the values synchronously over the entire state space, the
process would converge to V* even when v = 1. In the more interesting asynchronous case,
when v = 1, the long-term behavior of V; is not immediately clear; it may even be that V}
converges to something other than V*. The requirement that v < 1 insures that the use of
outdated information in the asynchronous updates does not cause a problem in convergence.

One of the most noteworthy aspects of this theorem is that it shows how to reduce the
problem of approximating V* to the problem of approximating T at a particular point V
(in particular, it is enough if T' can be approximated at V*); in many cases, the latter is
much easier to achieve and also to prove. For example, the theorem makes the convergence
of Q-learning a consequence of the classical Robbins-Monro theorem [20].

4 APPLICATIONS

This section makes use of Theorem 1 to prove the convergence of various reinforcement-
learning algorithms.



4.1 GENERALIZED Q-LEARNING FOR EXPECTED VALUE
MODELS

Consider the family of finite state and action generalized MDPs defined by the Bellman
equations

Vi(a) = @ (Rlza) + 3 Plava) V)|
a y
where the definition of @ does not depend on R or P. A Q-learning algorithm for this class
of models can be defined as follows. Given experience (xy, as, yr, 7¢) at time t and an estimate

Q:(x, a) of the optimal Q function, let

Quii(we,ar) = (1 — oy, a0))Qel(we, ar) + (s, ar) (Tt +7 Q& Qi a)) -

We can derive the assumptions necessary for this learning algorithm to satisfy the con-
ditions of Theorem 1 and therefore converge to the optimal ) values. The dynamic-
programming operator defining the optimal Q function is

TQ)(x,0) = Riz,a) +7 Y Pla.a,y) @ Qy. ).

The randomized approximate dynamic-programming operator that gives rise to the Q-
learning rule is

—ay(x,0))Q(x,a) + ay(x, a)(r; o ea')), if x =a; and a = a4
(ITQQ)wa) =, I ) bl @ QU ) 0 =

If
e y,; is randomly selected according to the probability distribution defined by P(a4, ay, -),

e @ is a non-expansion, and both the expected value and the variance of @, Q(y:,a)
exist given the way y; is sampled,

e 1, has finite variance and expected value given x; and a; equal to R(x, at),

e the learning rates are decayed so that >, v(v; = @, a; = a)ou(x,a) = oo and Y, y (v =
r,a; = a)ay(z,a)? < oo with probability 1 uniformly over X x A 2,

then a standard result from the theory of stochastic approximation [20] states that T} ap-
proximates T with probability 1 uniformly over X x A. That is, this method of using a
decayed, exponentially weighted average correctly computes the average one-step reward.

Let
1 —ay(x,a), if @ =2 and a = ay;

Gi(z,a) = { 0

otherwise,

2This condition implies, among other things, that every state-action pair is updated infinitely often. Here,
y denotes the characteristic function.



and (ea), if .
(@, a), if @ =x, and a = ay;
F(z,a) = { g, otherwise.
These functions satisfy the conditions of Theorem 1 (Condition 3 is implied by the restrictions
placed on the sequence of learning rates o).

Theorem 1 therefore implies that this generalized Q-learning algorithm converges to the
optimal ) function with probability 1 uniformly over X x A. The convergence of }-learning
for discounted MDPs and alternating Markov games follows trivially from this. Extensions
of this result for undiscounted “all-policies-proper” MDPs [3], a soft state aggregation learn-
ing rule [24], and a “spreading” learning rule [19] are given in an extended version of this
paper [28].

4.2 Q-LEARNING FOR MARKOV GAMES

Markov games are a generalization of MDPs and alternating Markov games in which both
players simultaneously choose actions at each step. The basic model was developed by Shap-
ley [23] and is defined by the tuple (S, A, B, P, R) and discount factor v. As in alternating
Markov games, the optimality criterion is one of discounted minimax optimality, but because
the players move simultaneously, the Bellman equations take on a more complex form:

V() = s in Y pla) (R”’“’b) +1 2 ey <y>) |
In these equations, R(x,a,b) is the immediate reward for the maximizer for taking action
a in state x at the same time the minimizer takes action b, P(x,a,b,y) is the probability
that state y is reached from state & when the maximizer takes action a and the minimizer
takes action b, and II(A) represents the set of discrete probability distributions over the set
A. The sets §, A, and B are finite.

Once again, optimal policies are policies that are in equilibrium, and there is always a
pair of optimal policies that are stationary. Unlike MDPs and alternating Markov games, the
optimal policies are sometimes stochastic; there are Markov games in which no deterministic
policy is optimal. The stochastic nature of optimal policies explains the need for the opti-
mization over probability distributions in the Bellman equations, and stems from the fact
that players must avoid being “second guessed” during action selection. An equivalent set of
equations can be written with a stochastic choice for the minimizer, and also with the roles
of the maximizer and minimizer reversed.

The Q-learning update rule for Markov games [13] given step t experience (@, ar, by, y, 1)
has the form

Q1 ar, by) := (1 — (e, ag, b)) Qu(y, ag, by) 4+ e, ag, by) (Tt + ® Qi(ys, a, b)) )

a,b

where

p€ll(A) beB

®gwab—maxm1n2p g(x,a,b).
acA

The results of the previous section prove that this rule converges to the optimal () function
under the proper conditions.
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4.3 RISK-SENSITIVE MODELS

Heger [8] described an optimality criterion for MDPs in which only the worst possible value
of the next state makes a contribution to the value of a state. An optimal policy under
this criterion is one that avoids states for which a bad outcome is possible, even if it is
not probable; for this reason, the criterion has a risk-averse quality to it. The generalized
Bellman equations for this criterion are

V*(z) = (? (R(:L',a) + Vy:P(I;,l;g)wv (y)) :

The argument in Section 4.5 shows that model-based reinforcement learning can be used
to find optimal policies in risk-sensitive models, as long as @ does not depend on R or P,
and P is estimated in a way that preserves its zero vs. non-zero nature in the limit.

For the model in which ®, f(z,a) = max, f(x,a), Heger defined a Q-learning-like al-
gorithm that converges to optimal policies without estimating R and P online. In essence,
the learning algorithm uses an update rule analogous to the rule in -learning with the
additional requirement that the initial Q) function be set optimistically; that is, Qo(x,a)
must be larger than Q*(z,a) for all « and a. Like Q-learning, this learning algorithm is a
generalization of Korf’s [12] LRTA* algorithm for stochastic environments.

Using Theorem 1 it is possible to prove the convergence of a generalization of Heger’s
algorithm to models where , f(x,a) = f(x,a*(f,2)) for some function a*(-); that is, as
long as the summary value of f(x,a) is equal to f(x,a*) for some a*. The proof is based
on estimating the Q-learning algorithm from above by an appropriate process where the Q
function is updated only if the received experience tuple is an extremity according to the
optimality equation; details are given in the extended paper [28].

4.4 EXPLORATION-SENSITIVE MODELS

John [11] considered the implications of insisting that reinforcement-learning agents keep
exploring forever; he found that better learning performance can be achieved if the Q-
learning rule is changed to incorporate the condition of persistent exploration. In John’s
formulation, the agent is forced to adopt a policy from a restricted set; in one example, the
agent must choose a stochastic stationary policy that selects actions at random 5% of the
time.

This approach requires that the definition of optimality be changed to reflect the restric-
tion on policies. The optimal value function is given by V*(x) = sup,cp V7 (x), where Py is
the set of permitted (stationary) policies, and the associated Bellman equations are

Ve (a) = sup 3 m(ena) (R<x,a> ; vzm,a,y)v*(y)) |

which corresponds to a generalized MDP model with @, g(z,a,y) = X, P(z,a,y)g9(x,a,y)
and ®, f(x,a) = sup,ep >, m(x,a)f(2,a). Because m(z,-) is a probability distribution for
any given state z, @ is a non-expansion and, thus, the convergence of the associated Q-
learning algorithm follows from the arguments in Section 4.1. As a result, John’s learning
rule gives the optimal policy under the revised optimality criterion.
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4.5 MODEL-BASED METHODS

The defining assumption in reinforcement learning is that the reward and transition func-
tions, R and P, are not known in advance. Although Q-learning shows that optimal value
functions can be estimated without ever explicitly learning R and P, learning R and P makes
more efficient use of experience at the expense of additional storage and computation [15].
The parameters of R and P can be learned from experience by keeping statistics for each
state-action pair on the expected reward and the proportion of transitions to each next
state. In model-based reinforcement learning, R and P are estimated on-line, and the value
function is updated according to the approximate dynamic-programming operator derived
from these estimates. Theorem 1 implies the convergence of a wide variety of model-based
reinforcement-learning methods.

The dynamic-programming operator defining the optimal value for generalized MDPs is
given in Equation 2. Here we assume that @ may depend on P and/or R, but @ may not.
It is possible to extend the following argument to allow @ to depend on P and R as well. In
model-based reinforcement learning, R and P are estimated by the quantities R; and P, and
@' is an estimate of the @ operator defined using R; and P;. As long as every state-action
pair is visited infinitely often, there are a number of simple methods for computing R; and
P; that converge to R and P. A bit more care is needed to insure that @' converges to
@, however. For example, in expected-reward models, @, g(x,a,y) = X, P(z,a,y)g(z,a,y)
and the convergence of P; to P guarantees the convergence of @' to @. On the other
hand, in a risk-sensitive model, @, ¢(, a,y) = min,p(y,q,y)>0 9(¢, @, y) and it is necessary to
approximate P in a way that insures that the set of y such that Pi(x,a,y) > 0 converges
to the set of y such that P(x,a,y) > 0. This can be accomplished easily, for example, by
setting Py(x,a,y) = 0 if no transition from = to y under a has been observed.

Assuming P and R can be estimated in a way that results in the convergence of @' to
@, the approximate dynamic-programming operator 7T; defined by

e L

converges to T' with probability 1 uniformly. Here, the set 7, C S represents the set of states
whose values are updated on step t; one popular choice is to set 7, = {x;}.

The functions
0, ifz €
1, otherwise,

G(z) = {

and

Fi(z) = { v, if x €7

0, otherwise,
satisfy the conditions of Theorem 1 as long as each « is in infinitely many 7; sets (Condition 3)
and the discount factor v is less than 1 (Condition 4).
As a consequence of this argument and Theorem 1, model-based methods can be used
to find optimal policies in MDPs, alternating Markov games, Markov games, risk-sensitive

MDPs, and exploration-sensitive MDPs. Also, if Ry = R and P, = P for all ¢, this result
implies that real-time dynamic programming converges to the optimal value function [1].
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5 CONCLUSIONS

In this paper, we presented a generalized model of Markov decision processes, and proved
the convergence of several reinforcement-learning algorithms in the generalized model.

Other Results We have derived a collection of results [28] for the generalized MDP model
that demonstrate its general applicability: the Bellman equations can be solved by value
iteration; a myopic policy with respect to an approximately optimal value function gives
an approximately optimal policy [34, 9]; when @ has a particular “maximization” prop-
erty, policy iteration converges to the optimal value function; and, for models with finite
state and action spaces, both value iteration and policy iteration identify optimal policies in
pseudopolynomial time.

Related Work The work presented here is closely related to several previous research
efforts. Szepesvari [27] described a related generalized reinforcement-learning model, and
presented conditions under which there is an optimal (stationary) policy that is myopic with
respect to the optimal value function.

Jaakkola, Jordan, and Singh [10] and Tsitsiklis [31] developed the connection between
stochastic-approximation theory and reinforcement learning in MDPs. Our work is similar
in spirit to that of Jaakkola, et al. We believe the form of Theorem 1 makes it particularly
convenient for proving the convergence of reinforcement-learning algorithms; our theorem
reduces the proof of the convergence of an asynchronous process to a simpler proof of con-
vergence of a corresponding synchronized one. This idea enables us to prove the convergence
of asynchronous stochastic processes whose underlying synchronous process is not of the
Robbins-Monro type (e.g., risk-sensitive MDPs, model-based algorithms, etc.).

Future Work There are many areas of interest in the theory of reinforcement learning
that we would like to address in future work. The results in this paper primarily concern
reinforcement-learning in contractive models (v < 1 or all-policies-proper), and there are im-
portant non-contractive reinforcement-learning scenarios, for example, reinforcement learn-
ing under an average-reward criterion [22, 14]. It would be interesting to develop a TD(A)
algorithm [25] for generalized MDPs; this has already been done for MDPs [17]. Theorem 1 is
not restricted to finite state spaces, and it might be valuable to prove the convergence of a
reinforcement-learning algorithm for a infinite state-space model.

Conclusion By identifying common elements among several reinforcement-learning sce-
narios, we created a new class of models that generalizes existing models in an interesting
way. In the generalized framework, we replicated the established convergence proofs for
reinforcement learning in Markov decision processes, and proved new results concerning
the convergence of reinforcement-learning algorithms in game environments, under a risk-
sensitive assumption, and under an exploration-sensitive assumption. At the heart of our
results is a new stochastic-approximation theorem that is easy to apply to new situations.
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